Speciation


Speciation
In this Dossier

Speciation in the context of Founder effect

In population genetics, the founder effect is the loss of genetic variation that occurs when a new population is established by a very small number of individuals from a larger population. It was first fully outlined by Ernst Mayr in 1942, using existing theoretical work by those such as Sewall Wright. As a result of the loss of genetic variation, the new population may be distinctively different, both genotypically and phenotypically, from the parent population from which it is derived. In extreme cases, the founder effect is thought to lead to the speciation and subsequent evolution of new species.

In the figure shown, the original population has nearly equal numbers of blue and red individuals. The three smaller founder populations show that one or the other color may predominate (founder effect), due to random sampling of the original population. A population bottleneck may also cause a founder effect, though it is not strictly a new population.

View the full Wikipedia page for Founder effect
↑ Return to Menu

Speciation in the context of Ancient lake

An ancient lake is a lake that has consistently carried water for more than one million years. Twelve of the 20 ancient lakes have existed for more than 2.6 million years, the full Quaternary period. Ancient lakes continue to persist due to plate tectonics in an active rift zone. This active rift zone creates lakes that are extremely deep and difficult to naturally fill with sediment. Due to the prolonged life of ancient lakes, they serve as models for isolated evolutionary traits and speciation. Most of the world's bodies of water are less than 18,000 years old. There are only 20 ancient lakes over 1 million years old.

Lake Baikal is often considered the oldest, as clear evidence shows that it is 25–30 million years old. Lake Zaysan may be even older, of Cretaceous origin and at least 66 million years old (most likely around 70 million years), but its exact age is controversial and labeled with some uncertainty. Another contender for oldest is Lake Maracaibo, estimated to be 20–36 million years old. In ancient times it was indisputably a true lake, but today it is saline and directly connected to the sea, leading many to consider it a large lagoon or bay.

View the full Wikipedia page for Ancient lake
↑ Return to Menu

Speciation in the context of Reproductive isolation

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

The mechanisms of reproductive isolation have been classified in a number of ways. Zoologist Ernst Mayr classified the mechanisms of reproductive isolation in two broad categories: pre-zygotic for those that act before fertilization (or before mating in the case of animals) and post-zygotic for those that act after it. The mechanisms are genetically controlled and can appear in species whose geographic distributions overlap (sympatric speciation) or are separate (allopatric speciation).

View the full Wikipedia page for Reproductive isolation
↑ Return to Menu

Speciation in the context of Peripatric speciation

Peripatric speciation is a mode of speciation in which a new species is formed from an isolated peripheral population. Since peripatric speciation resembles allopatric speciation, in that populations are isolated and prevented from exchanging genes, it can often be difficult to distinguish between them, and peripatric speciation may be considered one type or model of allopatric speciation. The primary distinguishing characteristic of peripatric speciation is that one of the populations is much smaller than the other, as opposed to (other types of) allopatric speciation, in which similarly-sized populations become separated. The terms peripatric and peripatry are often used in biogeography, referring to organisms whose ranges are closely adjacent but do not overlap, being separated where these organisms do not occur—for example on an oceanic island compared to the mainland. Such organisms are usually closely related (e.g. sister species); their distribution being the result of peripatric speciation.

The concept of peripatric speciation was first outlined by the evolutionary biologist Ernst Mayr in 1954. Since then, other alternative models have been developed such as centrifugal speciation, that posits that a species' population experiences periods of geographic range expansion followed by shrinking periods, leaving behind small isolated populations on the periphery of the main population. Other models have involved the effects of sexual selection on limited population sizes. Other related models of peripherally isolated populations based on chromosomal rearrangements have been developed such as budding speciation and quantum speciation.

View the full Wikipedia page for Peripatric speciation
↑ Return to Menu

Speciation in the context of Ploidy

Ploidy (/ˈplɔɪdi/) is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Here sets of chromosomes refers to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair—the form in which chromosomes naturally exist. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present (the "ploidy level"): monoploid (1 set), diploid (2 sets), triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), etc. The generic term polyploid is often used to describe cells with three or more sets of chromosomes.

Virtually all sexually reproducing organisms are made up of somatic cells that are diploid or greater, but ploidy level may vary widely between different organisms, between different tissues within the same organism, and at different stages in an organism's life cycle. Half of all known plant genera contain polyploid species, and about two-thirds of all grasses are polyploid. Many animals are uniformly diploid, though polyploidy is common in invertebrates, reptiles, and amphibians. In some species, ploidy varies between individuals of the same species (as in the social insects), and in others entire tissues and organ systems may be polyploid despite the rest of the body being diploid (as in the mammalian liver). For many organisms, especially plants and fungi, changes in ploidy level between generations are major drivers of speciation. In mammals and birds, ploidy changes are typically fatal. There is, however, evidence of polyploidy in organisms now considered to be diploid, suggesting that polyploidy has contributed to evolutionary diversification in plants and animals through successive rounds of polyploidization and rediploidization.

View the full Wikipedia page for Ploidy
↑ Return to Menu

Speciation in the context of Anagenesis

Anagenesis is the gradual evolution of a species that continues to exist as an interbreeding population. This contrasts with cladogenesis, which occurs when branching or splitting occurs, leading to two or more lineages and resulting in separate species. Anagenesis does not always lead to the formation of a new species from an ancestral species. When speciation does occur as different lineages branch off and cease to interbreed, a core group may continue to be defined as the original species. The evolution of this group, without extinction or species selection, is anagenesis.

View the full Wikipedia page for Anagenesis
↑ Return to Menu

Speciation in the context of Hybrid speciation

Hybrid speciation is a form of speciation where hybridization between two different species leads to a new species, reproductively isolated from the parent species. Previously, reproductive isolation between two species and their parents was thought to be particularly difficult to achieve, and thus hybrid species were thought to be very rare. With DNA analysis becoming more accessible in the 1990s, hybrid speciation has been shown to be a somewhat common phenomenon, particularly in plants. In botanical nomenclature, a hybrid species is also called a nothospecies. Hybrid species are by their nature polyphyletic.

View the full Wikipedia page for Hybrid speciation
↑ Return to Menu

Speciation in the context of Sympatry

In biology, two closely related species or populations are considered sympatric when they exist in the same geographic area and thus frequently encounter each other. An initially interbreeding population that splits into two or more distinct species sharing a common range exemplifies sympatric speciation. Such speciation may be a product of reproductive isolation – which prevents hybrid offspring from being viable or able to reproduce, thereby reducing gene flow – that results in genetic divergence. Sympatric speciation may, but need not, arise through secondary contact, which refers to speciation or divergence in allopatry followed by range expansions leading to an area of sympatry. Sympatric species or taxa in secondary contact may or may not interbreed.

View the full Wikipedia page for Sympatry
↑ Return to Menu

Speciation in the context of Common ancestry

Common descent is a concept in evolutionary biology applicable when one species is the ancestor of two or more species later in time. According to modern evolutionary biology, all living beings could be descendants of a unique ancestor commonly referred to as the last universal common ancestor (LUCA) of all life on Earth.

Common descent is an effect of speciation, in which multiple species derive from a single ancestral population. The more recent the ancestral population two species have in common, the more closely they are related. The most recent common ancestor of all currently living organisms is the last universal ancestor, which lived about 3.9 billion years ago. The two earliest pieces of evidence for life on Earth are graphite found to be biogenic in 3.7 billion-year-old metasedimentary rocks discovered in western Greenland and microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. All currently living organisms on Earth share a common genetic heritage, though the suggestion of substantial horizontal gene transfer during early evolution has led to questions about the monophyly (single ancestry) of life. 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago in the Precambrian.

View the full Wikipedia page for Common ancestry
↑ Return to Menu