Sound propagation in the context of "Acoustic insulation"

Play Trivia Questions online!

or

Skip to study material about Sound propagation in the context of "Acoustic insulation"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Sound propagation in the context of Soundproofing

Soundproofing is any means of impeding sound propagation. There are several methods employed including increasing the distance between the source and receiver, decoupling, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles for absorption, or using active anti-noise sound generators.

Acoustic quieting and noise control can be used to limit unwanted noise. Soundproofing can reduce the transmission of unwanted direct sound waves from the source to an involuntary listener through the use of distance and intervening objects in the sound path (see sound transmission class and sound reduction index).

↑ Return to Menu

Sound propagation in the context of Acoustic attenuation

In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity. This effect can be quantified through the Stokes's law of sound attenuation. Sound attenuation may also be a result of heat conductivity in the media as has been shown by G. Kirchhoff in 1868. The Stokes-Kirchhoff attenuation formula takes into account both viscosity and thermal conductivity effects.

For heterogeneous media, besides media viscosity, acoustic scattering is another main reason for removal of acoustic energy. Acoustic attenuation in a lossy medium plays an important role in many scientific researches and engineering fields, such as medical ultrasonography, vibration and noise reduction.

↑ Return to Menu