Solvable group in the context of Trivial subgroup


Solvable group in the context of Trivial subgroup

Solvable group Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Solvable group in the context of "Trivial subgroup"


⭐ Core Definition: Solvable group

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

↓ Menu
HINT:

In this Dossier

Solvable group in the context of Virtually

In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P.

Common uses for this would be when P is abelian, nilpotent, solvable or free. For example, virtually solvable groups are one of the two alternatives in the Tits alternative, while Gromov's theorem states that the finitely generated groups with polynomial growth are precisely the finitely generated virtually nilpotent groups.

View the full Wikipedia page for Virtually
↑ Return to Menu

Solvable group in the context of Nilpotent group

In mathematics, specifically group theory, a nilpotent group G is a group that has an upper central series that terminates with G. Equivalently, it has a central series of finite length or its lower central series terminates with {1}.

Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov.

View the full Wikipedia page for Nilpotent group
↑ Return to Menu