Solid solution strengthening in the context of "Stress field"

Play Trivia Questions online!

or

Skip to study material about Solid solution strengthening in the context of "Stress field"

Ad spacer

⭐ Core Definition: Solid solution strengthening

In metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element (the alloying element) to the crystalline lattice of another element (the base metal), forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms (e.g. the precipitation of intermetallic compounds).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Solid solution strengthening in the context of Inconel

Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, making it attractive for high-temperature applications in which aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.

Inconel alloys are typically used in high temperature applications. Common trade names for various Inconel alloys include:

↑ Return to Menu