Solar radii in the context of "Stellar rotation"

Play Trivia Questions online!

or

Skip to study material about Solar radii in the context of "Stellar rotation"

Ad spacer

⭐ Core Definition: Solar radii

A solar radius is a unit of distance, commonly understood as 695,700 km and expressed as , used mostly to express the size of an astronomical objects relative to that of the Sun, or their distance from it. This length is also called the nominal solar radius. The sun's actual radius, from which the unit of measurement is derived, is usually calculated as the radius from the sun's center out to the layer in the Sun's photosphere where the optical depth equals 2/3. One solar radius can be described as follows:This is an approximation: both because such distance is difficult to measure and can be measured in various ways, and because the sun is not a perfectly spherical object itself, and thus the actual radius varies depending on the point(s) measured and modality of measurement employed.

695,700 kilometres (432,300 miles) is approximately 10 times the average radius of Jupiter; 109 times the 6378 km radius of the Earth at its equator; and or 0.0047 of an astronomical unit, the approximate average distance between Earth and the Sun. The solar radius to the sun's poles and that to the equator differ slightly due to the Sun's rotation, which induces an oblateness in the order of 10 parts per million.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Solar radii in the context of Solar wind

The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes Ni, Ni, and Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

At a distance of more than a few solar radii from the Sun, the solar wind reaches speeds of 250–750 km/s and is supersonic, meaning it moves faster than the speed of fast magnetosonic waves. The flow of the solar wind is no longer supersonic at the termination shock. Other related phenomena include the aurora (northern and southern lights), comet tails that always point away from the Sun, and geomagnetic storms that can change the direction of magnetic field lines.

↑ Return to Menu

Solar radii in the context of Giant star

A giant star has a substantially larger radius and luminosity than a main-sequence (or dwarf) star of the same surface temperature. They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms giant and dwarf were coined for stars of quite different luminosity despite similar temperature or spectral type (namely K and M) by Ejnar Hertzsprung in 1905 or 1906.

Giant stars have radii up to a few hundred times the Sun and luminosities over 10 times that of the Sun. Stars still more luminous than giants are referred to as supergiants and hypergiants.

↑ Return to Menu