Solar flare in the context of "Electromagnetic interference"

Play Trivia Questions online!

or

Skip to study material about Solar flare in the context of "Electromagnetic interference"

Ad spacer

⭐ Core Definition: Solar flare

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

Solar flares are thought to occur when stored magnetic energy in the Sun's atmosphere accelerates charged particles in the surrounding plasma. This results in the emission of electromagnetic radiation across the electromagnetic spectrum. The typical time profile of these emissions features three identifiable phases: a precursor phase, an impulsive phase when particle acceleration dominates, a gradual phase in which hot plasma injected into the corona by the flare cools by a combination of radiation and conduction of energy back down to the lower atmosphere, and a currently unexplained EUV late phase that occurs in some flares.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Solar flare in the context of Gamma-ray astronomy

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies (above 100 keV) at the very shortest wavelengths. X-ray astronomy uses the next lower energy range, X-ray radiation, with energy below 100 keV.

In most cases, gamma rays from solar flares and Earth's atmosphere fall in the MeV range, but it's now known that solar flares can also produce gamma rays in the GeV range, contrary to previous beliefs. Much of the detected gamma radiation stems from collisions between hydrogen gas and cosmic rays within our galaxy. These gamma rays, originating from diverse mechanisms such as electron-positron annihilation, the inverse Compton effect and in some cases gamma decay, occur in regions of extreme temperature, density, and magnetic fields, reflecting violent astrophysical processes like the decay of neutral pions. They provide insights into extreme events like supernovae, hypernovae, and the behavior of matter in environments such as pulsars and blazars. A huge number of gamma ray emitting high-energy systems like black holes, stellar coronas, neutron stars, white dwarf stars, remnants of supernova, clusters of galaxies, including the Crab Nebula and the Vela Pulsar (the most powerful source so far), have been identified, alongside an overall diffuse gamma-ray background along the plane of the Milky Way galaxy. Cosmic radiation with the highest energy triggers electron-photon cascades in the atmosphere, while lower-energy gamma rays are only detectable above it. Gamma-ray bursts, like GRB 190114C, are transient phenomena challenging our understanding of high-energy astrophysical processes, ranging from microseconds to several hundred seconds.

↑ Return to Menu

Solar flare in the context of Coronal mass ejection

A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

If a CME enters interplanetary space, it is sometimes referred to as an interplanetary coronal mass ejection (ICME). ICMEs are capable of reaching and colliding with Earth's magnetosphere, where they can cause geomagnetic storms, aurorae, and in rare cases damage to electrical power grids. The largest recorded geomagnetic perturbation, resulting presumably from a CME, was the solar storm of 1859. Also known as the Carrington Event, it disabled parts of the newly created United States telegraph network, starting fires and electrically shocking some telegraph operators.

↑ Return to Menu

Solar flare in the context of Solar cycle

The Solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the Sun's surface. Over the period of a solar cycle, levels of solar radiation and ejection of solar material, the number and size of sunspots, solar flares, and coronal loops all exhibit a synchronized fluctuation from a period of minimum activity to a period of a maximum activity back to a period of minimum activity.

The magnetic field of the Sun flips during each solar cycle, with the flip occurring when the solar cycle is near its maximum. After two solar cycles, the Sun's magnetic field returns to its original state, completing what is known as a Hale cycle.

↑ Return to Menu

Solar flare in the context of Radio frequency interference

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both human-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras (northern/southern lights). EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

EMI can be used intentionally for radio jamming, as in electronic warfare.

↑ Return to Menu

Solar flare in the context of Carrington Event

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking on 1–2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere.

The geomagnetic storm was associated with a very bright solar flare on 1 September 1859. It was observed and recorded independently by British astronomers Richard Carrington and Richard Hodgson—the first records of a solar flare. A geomagnetic storm of this magnitude occurring today has the potential to cause widespread electrical disruptions, blackouts, and damage to the electrical power grid.

↑ Return to Menu

Solar flare in the context of Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts and solar flares.

Fermi, named for high-energy physics pioneer Enrico Fermi, was launched on 11 June 2008 at 16:05 UTC aboard a Delta II 7920-H rocket. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden, becoming the most sensitive gamma-ray telescope on orbit, succeeding INTEGRAL. The project is a recognized CERN experiment (RE7).

↑ Return to Menu

Solar flare in the context of Stellar explosion

Stellar explosion can refer to:

↑ Return to Menu

Solar flare in the context of Fermi acceleration

Fermi acceleration, sometimes referred to as diffusive shock acceleration (a subclass of Fermi acceleration), is the acceleration that charged particles undergo when being repeatedly reflected, usually by a magnetic mirror (see also Centrifugal mechanism of acceleration). It receives its name from physicist Enrico Fermi who first proposed the mechanism. This is thought to be the primary mechanism by which particles gain non-thermal energies in astrophysical shock waves. It plays a very important role in many astrophysical models, mainly of shocks including solar flares and supernova remnants.

There are two types of Fermi acceleration: first-order Fermi acceleration (in shocks) and second-order Fermi acceleration (in the environment of moving magnetized gas clouds). In both cases the environment has to be collisionless in order for the mechanism to be effective. This is because Fermi acceleration only applies to particles with energies exceeding the thermal energies, and frequent collisions with surrounding particles will cause severe energy loss and as a result no acceleration will occur.

↑ Return to Menu