Soil health in the context of "Microbiota"

Play Trivia Questions online!

or

Skip to study material about Soil health in the context of "Microbiota"

Ad spacer

⭐ Core Definition: Soil health

Soil health is a state of a soil meeting its range of ecosystem functions as appropriate to its environment. In more colloquial terms, the health of soil arises from favorable interactions of all soil components (living and non-living) that belong together, as in microbiota, plants and animals. It is possible that a soil can be healthy in terms of ecosystem functioning but not necessarily serve crop production or human nutrition directly, hence the scientific debate on terms and measurements.

Soil health testing is pursued as an assessment of this status but tends to be confined largely to agronomic objectives. Soil health depends on soil biodiversity (with a robust soil biota), and it can be improved via soil management, especially by care to keep protective living covers on the soil and by natural (carbon-containing) soil amendments. Inorganic fertilizers do not necessarily damage soil health if they are not used in excess, and if they bring about a general improvement of overall plant growth which contributes more carbon-containing residues to the soil.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Soil health in the context of Land consumption

Land consumption as part of human resource consumption is the conversion of land with healthy soil and intact habitats into areas for industrial agriculture, traffic (road building) and especially urban human settlements. More formally, the EEA has identified three land consuming activities:

  1. The expansion of built-up area which can be directly measured;
  2. the absolute extent of land that is subject to exploitation by agriculture, forestry or other economic activities; and
  3. the over-intensive exploitation of land that is used for agriculture and forestry.

In all of those respects, land consumption is equivalent to typical land use in industrialized regions and civilizations.

↑ Return to Menu

Soil health in the context of Soil degradation

Soil retrogression and degradation are two regressive evolution processes associated with the loss of equilibrium of a stable soil. Retrogression is primarily due to soil erosion and corresponds to a phenomenon where succession reverts the land to its natural physical state. Degradation or pedolysis is an evolution, different from natural evolution, related to the local climate and vegetation. It is due to the replacement of primary plant communities (known as climax vegetation) by the secondary communities. This replacement modifies the humus composition and amount, and affects the formation of the soil. It is directly related to human activity. Soil degradation may also be viewed as any change or ecological disturbance to the soil perceived to be deleterious or undesirable.

According to the Center for Development Research at the University of Bonn and the International Food Policy Research Institute in Washington, the quality of 33% of pastureland, 25% of arable land and 23% of forests has deteriorated globally over the last 30 years. 3.2 billion people are dependent on this land.

↑ Return to Menu

Soil health in the context of Green infrastructure

Green infrastructure or blue-green infrastructure refers to a network that provides the "ingredients" for solving urban and climatic challenges by building with nature. The main components of this approach include stormwater management, climate adaptation, the reduction of heat stress, increasing biodiversity, food production, better air quality, sustainable energy production, clean water, and healthy soils, as well as more human centered functions, such as increased quality of life through recreation and the provision of shade and shelter in and around towns and cities. Green infrastructure also serves to provide an ecological framework for social, economic, and environmental health of the surroundings. More recently scholars and activists have also called for green infrastructure that promotes social inclusion and equity rather than reinforcing pre-existing structures of unequal access to nature-based services.

Green infrastructure is considered a subset of "Sustainable and Resilient Infrastructure", which is defined in standards such as SuRe, the Standard for Sustainable and Resilient Infrastructure. However, green infrastructure can also mean "low-carbon infrastructure" such as renewable energy infrastructure and public transportation systems (See "low-carbon infrastructure"). Blue-green infrastructure can also be a component of "sustainable drainage systems" or "sustainable urban drainage systems" (SuDS or SUDS) designed to manage water quantity and quality, while providing improvements to biodiversity and amenity.

↑ Return to Menu

Soil health in the context of Soil management

Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance (such as soil fertility or soil mechanics). It includes soil conservation, soil amendment, and optimal soil health. In agriculture, some amount of soil management is needed both in nonorganic and organic types to prevent agricultural land from becoming less productive over decades. Organic farming in particular emphasizes more on optimal soil management, because it uses soil health as the exclusive or nearly exclusive source of its fertilization and pest control.

Soil management is an important tool for addressing climate change by increasing soil carbon and as well as addressing other major environmental issues associated with modern industrial agriculture practices. Project Drawdown highlights three major soil management practices as actionable steps for climate change mitigation: improved nutrient management, conservation agriculture (including no-till agriculture), and use of regenerative agriculture.

↑ Return to Menu

Soil health in the context of Soil water (retention)

Soils can process and hold considerable amounts of water. They can take in water, and will keep doing so until they are full, or until the rate at which they can transmit water into and through the pores is exceeded. Some of this water will steadily drain through the soil (via gravity) and end up in the waterways and streams, but much of it will be retained, despite the influence of gravity. Much of this retained water can be used by plants and other organisms, also contributing to land productivity and soil health.

↑ Return to Menu

Soil health in the context of Beneficial organism

In agriculture and gardening, a beneficial organism is any organism that benefits the growing process, including insects, arachnids, other animals, plants, bacteria, fungi, viruses, and nematodes. Benefits include pest control, pollination, and maintenance of soil health. The opposite of beneficial organisms are pests, which are organisms deemed detrimental to the growing process. There are many different types of beneficial organisms as well as beneficial microorganisms. Also, microorganisms have things like salt and sugar in them. Beneficial organisms include but are not limited to: Birds, Bears, Nematodes, Insects, Arachnids, and fungi. The ways that birds and bears are considered beneficial is mainly because they consume seeds from plant and spread them through feces. Birds also prey on certain insects that eat plants and hinder them from growing these insects are known as non beneficial organisms. Nematodes are considered beneficial because they will help compost and provide nutrients for the soil the plants are growing in. Insects and arachnids help the growing process because they prey on non beneficial organisms that consume plants for food. Fungi help the growing process by using long threads of mycelium that can reach very long distances away from the tree or plant and bring water and nutrients back to the tree or plant roots.

↑ Return to Menu

Soil health in the context of Beneficial weed

A beneficial weed can be an invasive plant that has some companion plant effect, which is edible, contributes to soil health, adds ornamental value, or is beneficial in some way. These plants are normally not domesticated. However, some invasive plants, such as dandelions, are commercially cultivated in addition to growing in the wild. Beneficial weeds include many wildflowers, as well as other weeds that are commonly removed or poisoned. Certain weeds that have obnoxious and destructive qualities have been shown to fight illness and are thus used in medicine. Reductions in abundances of weeds which act as hosts may affect associated insects and other taxa which are beneficial. For example, Parthenium hysterophorus which is native to Northern Mexico and parts of the US, has been an issue for years due to its toxicity and ability to spread rapidly. In the past few decades though research has found that Parthenium hysterophorus has been used in traditional medicine to treat inflammation, pain, fever, neurological disorders and diseases like malaria and dysentery. It is also known to create Biogas and can be used as a bioremediation agent to break down heavy metals and other pollutants.

↑ Return to Menu