Smoothing in the context of Data set


Smoothing in the context of Data set

Smoothing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Smoothing in the context of "Data set"


⭐ Core Definition: Smoothing

In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased, leading to a smoother signal.

Reducing noise by smoothing may aid in data analysis in two notable ways:

↓ Menu
HINT:

In this Dossier

Smoothing in the context of Spatial statistics

↑ Return to Menu

Smoothing in the context of Curve fitting

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fitted to data observed with random errors. Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables. Extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to a degree of uncertainty since it may reflect the method used to construct the curve as much as it reflects the observed data.

For linear-algebraic analysis of data, "fitting" usually means trying to find the curve that minimizes the vertical (y-axis) displacement of a point from the curve (e.g., ordinary least squares). However, for graphical and image applications, geometric fitting seeks to provide the best visual fit; which usually means trying to minimize the orthogonal distance to the curve (e.g., total least squares), or to otherwise include both axes of displacement of a point from the curve. Geometric fits are not popular because they usually require non-linear and/or iterative calculations, although they have the advantage of a more aesthetic and geometrically accurate result.

View the full Wikipedia page for Curve fitting
↑ Return to Menu

Smoothing in the context of Word n-gram language model

A word n-gram language model is a statistical model of language which calculates the probability of the next word in a sequence from a fixed size window of previous words. If one previous word is considered, it is a bigram model; if two words, a trigram model; if n − 1 words, an n-gram model.

Special tokens are introduced to denote the start and end of a sentence and . To prevent a zero probability being assigned to unseen words, the probability of each seen word is slightly lowered to make room for the unseen words in a given corpus. To achieve this, various smoothing methods are used, from simple "add-one" smoothing (assigning a count of 1 to unseen n-grams, as an uninformative prior) to more sophisticated techniques, such as Good–Turing discounting or back-off models.

View the full Wikipedia page for Word n-gram language model
↑ Return to Menu