Smooth muscle tissue in the context of "Organ (anatomy)"

Play Trivia Questions online!

or

Skip to study material about Smooth muscle tissue in the context of "Organ (anatomy)"

Ad spacer

⭐ Core Definition: Smooth muscle tissue

Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non-striated, so-called because it has no sarcomeres and therefore no striations (bands or stripes). It can be divided into two subgroups, single-unit and multi-unit smooth muscle. Within single-unit muscle, the whole bundle or sheet of smooth muscle cells contracts as a syncytium.

Smooth muscle is found in the walls of hollow organs, including the stomach, intestines, bladder and uterus. In the walls of blood vessels, and lymph vessels, (excluding blood and lymph capillaries) it is known as vascular smooth muscle. There is smooth muscle in the tracts of the respiratory, urinary, and reproductive systems. In the eyes, the ciliary muscles, iris dilator muscle, and iris sphincter muscle are types of smooth muscles. The iris dilator and sphincter muscles are contained in the iris and contract in order to dilate or constrict the pupils. The ciliary muscles change the shape of the lens to focus on objects in accommodation. In the skin, smooth muscle cells such as those of the arrector pili cause hair to stand erect in response to cold temperature and fear.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Smooth muscle tissue in the context of Organ (biology)

In a multicellular organism, an organ is a collection of tissues joined in a structural unit to serve a common function. In the hierarchy of life, an organ lies between tissue and an organ system. Tissues are formed from same type cells to act together in a function. Tissues of different types combine to form an organ which has a specific function. The intestinal wall for example is formed by epithelial tissue and smooth muscle tissue. Two or more organs working together in the execution of a specific body function form an organ system, also called a biological system or body system.

An organ's tissues are broadly classified into parenchyma, the functional tissue, and stroma, the structural tissue with supportive, connective, or ancillary functions. For example, the gland tissue that produces hormones is the parenchyma, while the stroma includes the nerves that innervate the parenchyma, the blood vessels that oxygenate and nourish it and remove metabolic wastes, and the connective tissues that provide structure, placement, and anchoring. The primary tissues that form an organ generally have common embryologic origins, often arising from the same germ layer. Organs are present in most multicellular organisms. In single-celled organisms such as eukaryotes, the functional analogue of an organ is an organelle. In plants, there are three main organs.The number of organs in any organism depends on the definition used. There are approximately 79 organs in the human body; the exact number remains debated.

↑ Return to Menu

Smooth muscle tissue in the context of Myoglobin

Myoglobin (symbol Mb or MB) is an iron- and oxygen-binding protein found in the cardiac and skeletal muscle tissue of vertebrates in general and in almost all mammals. Myoglobin is distantly related to hemoglobin. Compared to hemoglobin, myoglobin has a higher affinity for oxygen and does not have cooperative binding with oxygen like hemoglobin does. Myoglobin consists of non-polar amino acids at the core of the globulin, where the heme group is non-covalently bounded with the surrounding polypeptide of myoglobin. In humans, myoglobin is found in the bloodstream only after muscle injury.

High concentrations of myoglobin in muscle cells allow organisms to hold their breath for a longer period of time. Diving mammals such as whales and seals have muscles with particularly high abundance of myoglobin. Myoglobin is found in Type I muscle, Type II A, and Type II B; although many older texts describe myoglobin as not found in smooth muscle, this has proved erroneous: there is also myoglobin in smooth muscle cells.

↑ Return to Menu

Smooth muscle tissue in the context of Myosin

Myosins (/ˈməsɪn, --/) are a family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility.

The first myosin (M2) to be discovered was in 1864 by Wilhelm Kühne. Kühne had extracted a viscous protein from skeletal muscle that he held responsible for keeping the tension state in muscle. He called this protein myosin. The term has been extended to include a group of similar ATPases found in the cells of both striated muscle tissue and smooth muscle tissue.

↑ Return to Menu