Small-angle approximation in the context of "Paraxial approximation"

Play Trivia Questions online!

or

Skip to study material about Small-angle approximation in the context of "Paraxial approximation"




⭐ Core Definition: Small-angle approximation

For small angles, the trigonometric functions sine, cosine, and tangent can be calculated with reasonable accuracy by the following simple approximations:

↓ Menu

In this Dossier

Small-angle approximation in the context of Paraxial optics

In geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens).

A paraxial ray is a ray that makes a small angle (θ) to the optical axis of the system, and lies close to the axis throughout the system. Generally, this allows three important approximations (for θ in radians) for calculation of the ray's path, namely:

↑ Return to Menu

Small-angle approximation in the context of Cosine error effect

Cosine error is a type of measurement error caused by the difference between the intended and actual directions in which a measurement is taken. Depending on the type of measurement, it either multiplies or divides the true value by the cosine of the angle between the two directions.

For small angles the resulting error is typically very small, since an angle needs to be relatively large for its cosine to depart significantly from 1.

↑ Return to Menu

Small-angle approximation in the context of Simple harmonic motion

In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely (if uninhibited by friction or any other dissipation of energy).

Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency. Other phenomena can be modeled by simple harmonic motion, including the motion of a simple pendulum, although for it to be an accurate model, the net force on the object at the end of the pendulum must be proportional to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle approximation). Simple harmonic motion can also be used to model molecular vibration. A mass-spring system is a classic example of simple harmonic motion.

↑ Return to Menu