Skarn in the context of Little Cottonwood Canyon


Skarn in the context of Little Cottonwood Canyon

⭐ Core Definition: Skarn

Skarns or tactites are coarse-grained metamorphic rocks that form by replacement of carbonate-bearing rocks during regional or contact metamorphism and metasomatism. Skarns may form by metamorphic recrystallization of impure carbonate protoliths, bimetasomatic reaction of different lithologies, and infiltration metasomatism by magmatic-hydrothermal fluids. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that commonly intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from a variety of sources; magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on both the original composition of the hydrothermal fluid and the original composition of the protolith.

If a skarn has a respectable amount of ore mineralization that can be mined for a profit, it can be classified as a skarn deposit.

↓ Menu
HINT:

In this Dossier

Skarn in the context of Hydrothermal mineral deposit

Hydrothermal mineral deposits are accumulations of valuable minerals which formed from hot waters circulating in Earth's crust through fractures. They eventually produce metallic-rich fluids concentrated in a selected volume of rock, which become supersaturated and then precipitate ore minerals. In some occurrences, minerals can be extracted for a profit by mining. Discovery of mineral deposits consumes considerable time and resources and only about one in every one thousand prospects explored by companies are eventually developed into a mine. A mineral deposit is any geologically significant concentration of an economically useful rock or mineral present in a specified area. The presence of a known but unexploited mineral deposit implies a lack of evidence for profitable extraction.

Hydrothermal mineral deposits are divided into six main subcategories: porphyry, skarn, volcanogenic massive sulfide (VMS), sedimentary exhalative (SEDEX), and epithermal and Mississippi Valley-type (MVT) deposits. Each hydrothermal mineral deposit has different distinct structures, ages, sizes, grades, geological formation, characteristics and, most importantly, value. Their names derive from their formation, geographical location or distinctive features.

View the full Wikipedia page for Hydrothermal mineral deposit
↑ Return to Menu

Skarn in the context of Wollastonite

Wollastonite is a calcium inosilicate mineral (CaSiO3) that may contain small amounts of iron, magnesium, and manganese substituting for calcium. It is usually white. It forms when impure limestone or dolomite is subjected to high temperature and pressure, which sometimes occurs in the presence of silica-bearing fluids as in skarns or in contact with metamorphic rocks. Associated minerals include garnets, vesuvianite, diopside, tremolite, epidote, plagioclase feldspar, pyroxene and calcite. It is named after the English chemist and mineralogist William Hyde Wollaston (1766–1828).

Despite its chemical similarity to the compositional spectrum of the pyroxene group of minerals—where magnesium (Mg) and iron (Fe) substitution for calcium ends with diopside and hedenbergite respectively—it is structurally very different, with a third SiO4−4 tetrahedron in the linked chain (as opposed to two in the pyroxenes).

View the full Wikipedia page for Wollastonite
↑ Return to Menu

Skarn in the context of Hedenbergite

Hedenbergite, CaFeSi2O6 (CaFe(SiO3)2), is the iron-rich end member of the pyroxene group having a monoclinic crystal system. The mineral is extremely rarely found as a pure substance, and usually has to be synthesized in a lab. It was named in 1819 after M.A. Ludwig Hedenberg, who was the first to define hedenbergite as a mineral. Contact metamorphic rocks high in iron are the primary geologic setting for hedenbergite. This mineral is unique because it can be found in chondrites and skarns (calc–silicate metamorphic rocks). As a member of the pyroxene family, it has generated considerable interest due to its significance in general geologic processes.

View the full Wikipedia page for Hedenbergite
↑ Return to Menu