Sinkhole in the context of "Natural disasters"

⭐ In the context of natural disasters, sinkholes are considered…

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Sinkhole in the context of Soil erosion

Soil erosion is the denudation or wearing away of the upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, and animals (including humans). In accordance with these agents, erosion is sometimes divided into water erosion, glacial erosion, snow erosion, wind (aeolian) erosion, zoogenic erosion and anthropogenic erosion such as tillage erosion. Soil erosion may be a slow process that continues relatively unnoticed, or it may occur at an alarming rate causing a serious loss of topsoil. The loss of soil from farmland may be reflected in reduced crop production potential, lower surface water quality and damaged drainage networks. Soil erosion could also cause sinkholes.

Human activities have increased by 10–50 times the rate at which erosion is occurring world-wide.Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes) ecological collapse, both because of loss of the nutrient-rich upper soil layers. In some cases, the eventual result is desertification. Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are the two primary causes of land degradation; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems worldwide.

↑ Return to Menu

Sinkhole in the context of Natural disaster

A natural disaster is the very harmful impact on a society or community brought by natural phenomenon or hazard. Some examples of natural hazards include avalanches, droughts, earthquakes, floods, heat waves, landslides - including submarine landslides, tropical cyclones, volcanic activity and wildfires. Additional natural hazards include blizzards, dust storms, firestorms, hails, ice storms, sinkholes, thunderstorms, tornadoes and tsunamis.

A natural disaster can cause loss of life or damage property. It typically causes economic damage. How bad the damage is depends on how well people are prepared for disasters and how strong the buildings, roads, and other structures are.

↑ Return to Menu

Sinkhole in the context of Environmental effects of mining

Environmental impact of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change.

Some mining methods (lithium mining, phosphate mining, coal mining, mountaintop removal mining, and sand mining) may have such significant environmental and public health effects that mining companies in some countries are required to follow strict environmental and rehabilitation codes to ensure that the mined area returns to its original state. Mining can provide various advantages to societies, yet it can also spark conflicts, particularly regarding land use both above and below the surface.

↑ Return to Menu

Sinkhole in the context of Karst

Karst (/kɑːrst/) is a topography formed from the dissolution of soluble carbonate rocks such as limestone and dolomite. It is characterized by features like poljes above and drainage systems with sinkholes and caves underground. There is some evidence that karst may occur in more weathering-resistant rocks such as quartzite given the right conditions.

Subterranean drainage may limit surface water, with few if any rivers or lakes. In regions where the dissolved bedrock is covered (perhaps by debris) or confined by one or more superimposed non-soluble rock strata, distinctive karst features may occur only at subsurface levels and can be totally missing above ground.

↑ Return to Menu

Sinkhole in the context of Surface water

Surface water is water located on top of land, forming terrestrial (surrounding by land on all sides) waterbodies, and may also be referred to as blue water, opposed to the seawater and waterbodies like the ocean.

The vast majority of surface water is produced by precipitation. As the climate warms in the spring, snowmelt runs off towards nearby streams and rivers contributing towards a large portion of human drinking water. Levels of surface water lessen as a result of evaporation as well as water moving into the ground becoming ground-water. Alongside being used for drinking water, surface water is also used for irrigation, wastewater treatment, livestock, industrial uses, hydropower, and recreation. For USGS water-use reports, surface water is considered freshwater when it contains less than 1,000 milligrams per liter (mg/L) of dissolved solids.

↑ Return to Menu

Sinkhole in the context of Caldera

A caldera (/kɔːlˈdɛrə, kæl-/ kawl-DERR-ə, kal-) is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcanic eruption. The ejection of large volumes of magma in a short time can upset the integrity of a magma chamber's structure by in effect removing much of the chamber's filling material. The walls and ceiling of a chamber may now not be able to support its own weight and any substrate or rock resting above. The ground surface then collapses into the emptied or partially emptied magma chamber, leaving a large depression at the surface that may have a diameter of dozens of kilometers. Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Compared to the thousands of volcanic eruptions that occur over the course of a century, the formation of a caldera is a rare event, occurring only a few times within a given window of 100 years. Only nine caldera-forming collapses are known to have occurred between 1911 and 2022, with the caldera collapses at Kīlauea, Hawaii, in 2018 and Hunga Tonga–Hunga Haʻapai in 2022 being the most recent. Volcanoes that have formed a caldera are sometimes described as "caldera volcanoes".

↑ Return to Menu

Sinkhole in the context of Copepod

Copepods (/ˈkpəpɒd/; meaning 'oar-feet') are a group of small crustaceans found in nearly every freshwater and saltwater habitat. Some species are planktonic (living in the water column), some are benthic (living on the sediments), several species have parasitic phases, and some continental species may live in limnoterrestrial habitats and other wet terrestrial places, such as swamps, under leaf fall in wet forests, bogs, springs, ephemeral ponds, puddles, damp moss, or water-filled recesses of plants (phytotelmata) such as bromeliads and pitcher plants. Many live underground in marine and freshwater caves, sinkholes, or stream beds. Copepods are sometimes used as biodiversity indicators.

↑ Return to Menu

Sinkhole in the context of Subterranean river

A subterranean river (also known as an underground river) is a river or watercourse that runs wholly or partly beneath the ground, one where the riverbed does not represent the surface of the Earth. It is distinct from an aquifer, which may flow like a river but is contained within a permeable layer of rock or other unconsolidated materials. A river flowing below ground level in an open gorge is not classed as subterranean.

Some natural rivers may be entirely subterranean, collecting in and flowing through cave systems. In karst topography, rivers that originate above ground can disappear into sinkholes, continuing underground until they reappear on the surface downstream, possibly having merged with other subterranean rivers. The longest subterranean river in the world is the Sistema Sac Actun cave system in Mexico.

↑ Return to Menu

Sinkhole in the context of Northern Karst (Puerto Rico)

The Northern Karst Belt (Spanish: Cinturón del Carso Norteño) is a limestone karst landscape located in the northwestern region of Puerto Rico. A karst is a topographical zone formed by the dissolution of soluble porous rocks, such as limestone, with features such as mogotes, canyons, caves, sinkholes, streams and rivers, all of which are common on this region of the island. Some of the island's main rivers, including its longest (La Plata River), traverse the karst and form some of the most distinctive Puerto Rican geographical features such as the Camuy caverns. Many of these rivers feed into and are important in the formation of many marshy areas such as the Caño Tiburones wetlands.

↑ Return to Menu