Simply connected space in the context of "Path (topology)"

Play Trivia Questions online!

or

Skip to study material about Simply connected space in the context of "Path (topology)"

Ad spacer

⭐ Core Definition: Simply connected space

In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Simply connected space in the context of Flat universe

In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology (which itself is constrained by curvature). General relativity explains how spatial curvature (local geometry) is constrained by gravity. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. For example; a multiply connected space like a 3 torus has everywhere zero curvature but is finite in extent, whereas a flat simply connected space is infinite in extent (such as Euclidean space).

Current observational evidence (WMAP, BOOMERanG, and Planck for example) imply that the observable universe is spatially flat to within a 0.4% margin of error of the curvature density parameter with an unknown global topology. It is currently unknown whether the universe is simply connected like euclidean space or multiply connected like a torus.

↑ Return to Menu

Simply connected space in the context of Friedmann–Lemaître–Robertson–Walker metric

The Friedmann–Lemaître–Robertson–Walker metric (FLRW; /ˈfrdmən ləˈmɛtrə .../) is a metric that describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson, and Arthur Geoffrey Walker – is variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). When combined with Einstein's field equations, the metric gives the Friedmann equation, which has been developed into the Standard Model of modern cosmology and further developed into the Lambda-CDM model.

↑ Return to Menu

Simply connected space in the context of Cosmic string

Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simply connected.

In less formal terms, they are hypothetical long, thin defects in the fabric of space. They might have formed in the early universe during a process where certain symmetries were broken. Their existence was first contemplated by the theoretical physicist Tom Kibble in the 1970s.

↑ Return to Menu

Simply connected space in the context of Geometrisation conjecture

In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic).

In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982) as part of his 24 questions, and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

↑ Return to Menu