Sidereal year in the context of "Annum"

Play Trivia Questions online!

or

Skip to study material about Sidereal year in the context of "Annum"

Ad spacer

⭐ Core Definition: Sidereal year

A sidereal year (/sˈdɪəri.əl/, US also /sɪ-/; from Latin sidus 'asterism, star'), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars.

Hence, for Earth, it is also the time taken for the Sun to return to the same position relative to Earth with respect to the fixed stars after apparently travelling once around the ecliptic.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Sidereal year in the context of Year

A year is a unit of time based on how long it takes the Earth to orbit the Sun. In scientific use, the tropical year (approximately 365 solar days, 5 hours, 48 minutes, 45 seconds) and the sidereal year (about 20 minutes longer) are more exact. The modern calendar year, as reckoned according to the Gregorian calendar, approximates the tropical year by using a system of leap years.

The term 'year' is also used to indicate other periods of roughly similar duration, such as the lunar year (a roughly 354-day cycle of twelve of the Moon's phases – see lunar calendar), as well as periods loosely associated with the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc.

↑ Return to Menu

Sidereal year in the context of Solar year

A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky – as viewed from the Earth or another celestial body of the Solar System – thus completing a full cycle of astronomical seasons. For example, it is the time from vernal equinox to the next vernal equinox, or from summer solstice to the next summer solstice. It is the type of year used by tropical solar calendars.

The tropical year is one type of astronomical year and particular orbital period. Another type is the sidereal year (or sidereal orbital period), which is the time it takes Earth to complete one full orbit around the Sun as measured with respect to the fixed stars, resulting in a duration of 20 minutes longer than the tropical year, because of the precession of the equinoxes.

↑ Return to Menu

Sidereal year in the context of Mercury (planet)

Mercury is the first planet from the Sun and the smallest in the Solar System. It is a rocky planet with a trace atmosphere and a surface gravity slightly higher than that of Mars. The surface of Mercury is similar to Earth's Moon, being heavily cratered, with an expansive rupes system generated from thrust faults, and bright ray systems, formed by ejecta. Its largest crater, Caloris Planitia, has a diameter of 1,550 km (960 mi), which is about one-third the diameter of the planet (4,880 km or 3,030 mi). Being the most inferior orbiting planet, it always appears close to the sun in Earth's sky, either as a "morning star" or an "evening star". It is the planet with the highest delta-v required for travel from Earth, as well as to and from the other planets in the Solar System.

Mercury's sidereal year (88.0 Earth days) and sidereal day (58.65 Earth days) are in a 3:2 ratio, in a spin–orbit resonance. Consequently, one solar day (sunrise to sunrise) on Mercury lasts for around 176 Earth days: twice the planet's sidereal year. This means that one side of Mercury will remain in sunlight for one Mercurian year of 88 Earth days; while during the next orbit, that side will be in darkness all the time until the next sunrise after another 88 Earth days. Above the planet's surface is an extremely tenuous exosphere and a faint magnetic field just strong enough to deflect solar winds. Combined with its high orbital eccentricity, the planet's surface has widely varying sunlight intensity and temperature, with the equatorial regions ranging from −170 °C (−270 °F) at night to 420 °C (790 °F) during sunlight. Due to its very small axial tilt, the planet's poles are permanently shadowed. This strongly suggests that water ice could be present in the craters.

↑ Return to Menu