Shock heating in the context of "Sonic boom"

Play Trivia Questions online!

or

Skip to study material about Shock heating in the context of "Sonic boom"

Ad spacer

⭐ Core Definition: Shock heating

In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium, but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

For the purpose of comparison, in supersonic flows, additional increased expansion may be achieved through an expansion fan, also known as a Prandtl–Meyer expansion fan. The accompanying expansion wave may approach and eventually collide and recombine with the shock wave, creating a process of destructive interference. The sonic boom associated with the passage of a supersonic aircraft is a type of sound wave produced by constructive interference.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Shock heating in the context of Warm–hot intergalactic medium

The warm–hot intergalactic medium (WHIM) is the sparse, warm-to-hot (10 to 10 K) plasma that cosmologists believe to exist in the spaces between galaxies and to contain 40–50% of the baryonic 'normal matter' in the universe at the current epoch. The WHIM can be described as a web of hot, diffuse gas stretching between galaxies, and consists of plasma, as well as atoms and molecules, in contrast to dark matter. The WHIM is a proposed solution to the missing baryon problem, where the observed amount of baryonic matter does not match theoretical predictions from cosmology.

Much of what is known about the warm–hot intergalactic medium comes from computer simulations of the cosmos. The WHIM is expected to form a filamentary structure of tenuous, highly ionized baryons with a density of 1−10 particles per cubic meter. Within the WHIM, gas shocks are created as a result of active galactic nuclei, along with the gravitationally-driven processes of merging and accretion. Part of the gravitational energy supplied by these effects is converted into thermal emissions of the matter by collisionless shock heating.

↑ Return to Menu