Shale in the context of "Kitadani Formation"

Play Trivia Questions online!

or

Skip to study material about Shale in the context of "Kitadani Formation"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Shale in the context of Siltstone

Siltstone, also known as aleurolite, is a clastic sedimentary rock that is composed mostly of silt. It is a form of mudrock with a low clay mineral content, which can be distinguished from shale by its lack of fissility.

Although its permeability and porosity is relatively low, siltstone is sometimes a tight gas reservoir rock, an unconventional reservoir for methane gas that requires hydraulic fracturing for economic gas production.

↑ Return to Menu

Shale in the context of Marker horizon

Marker horizons (also referred to as chronohorizons, key beds or marker beds) are stratigraphic units of the same age and of such distinctive composition and appearance, that, despite their presence in separate geographic locations, there is no doubt about their being of equivalent age (isochronous) and of common origin. Such clear markers facilitate the correlation of strata, and used in conjunction with fossil floral and faunal assemblages and paleomagnetism, permit the mapping of land masses and bodies of water throughout the history of the earth. They usually consist of a relatively thin layer of sedimentary rock that is readily recognized on the basis of either its distinct physical characteristics or fossil content and can be mapped over a very large geographic area. As a result, a key bed is useful for correlating sequences of sedimentary rocks over a large area. Typically, key beds were created as the result of either instantaneous events or (geologically speaking) very short episodes of the widespread deposition of a specific types of sediment. As the result, key beds often can be used for both mapping and correlating sedimentary rocks and dating them. Volcanic ash beds (tonsteins and bentonite beds) and impact spherule beds, and specific megaturbidites are types of key beds created by instantaneous events. The widespread accumulation of distinctive sediments over a geologically short period of time have created key beds in the form of peat beds, coal beds, shell beds, marine bands, black shales in cyclothems, and oil shales. A well-known example of a key bed is the global layer of iridium-rich impact ejecta that marks the Cretaceous–Paleogene boundary (K–T boundary).

Palynology, the study of fossil pollens and spores, routinely works out the stratigraphy of rocks by comparing pollen and spore assemblages with those of well-known layers—a tool frequently used by petroleum exploration companies in the search for new fields. The fossilised teeth or elements of conodonts are an equally useful tool.

↑ Return to Menu

Shale in the context of Slate

Slate is a fine-grained, foliated, homogeneous, metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade, regional metamorphism. It is the finest-grained foliated metamorphic rock. Foliation may not correspond to the original sedimentary layering, but instead is in planes perpendicular to the direction of metamorphic compression.

The foliation in slate, called "slaty cleavage", is caused by strong compression in which fine-grained clay forms flakes to regrow in planes perpendicular to the compression. When expertly "cut" by striking parallel to the foliation with a specialized tool in the quarry, many slates display a property called fissility, forming smooth, flat sheets of stone which have long been used for roofing, floor tiles, and billiard tables. Slate is frequently grey in color, especially when seen en masse covering roofs. However, slate occurs in a variety of colors even from a single locality; for example, slate from North Wales can be found in many shades of grey, from pale to dark, and may also be purple, green, or cyan. Slate is not to be confused with shale, from which it may be formed, or schist.

↑ Return to Menu

Shale in the context of Geomorphology

Geomorphology (from Ancient Greek γῆ () 'earth' μορφή (morphḗ) 'form' and λόγος (lógos) 'study') is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

↑ Return to Menu

Shale in the context of Schist

Schist (/ˈʃɪst/ SHIST) is a medium-grained metamorphic rock generally derived from fine-grained sedimentary rock, like shale. It shows pronounced schistosity (named for the rock). This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes or plates. This texture reflects a high content of platy minerals, such as mica, talc, chlorite, or graphite. These are often interleaved with more granular minerals, such as feldspar or quartz.

Schist typically forms during regional metamorphism accompanying the process of mountain building (orogeny) and usually reflects a medium grade of metamorphism. Schist can form from many different kinds of rocks, including sedimentary rocks such as mudstones and igneous rocks such as tuffs. Schist metamorphosed from mudstone is particularly common and is often very rich in mica (a mica schist). Where the type of the original rock (the protolith) is discernible, the schist is usually given a name reflecting its protolith, such as schistose metasandstone. Otherwise, the names of the constituent minerals will be included in the rock name, such as quartz-felspar-biotite schist.

↑ Return to Menu

Shale in the context of Flysch

Flysch (/flɪʃ/) is a sequence of sedimentary rock layers that progress from deep-water and turbidity flow deposits to shallow-water shales and sandstones. It is deposited when a deep basin forms rapidly on the continental side of a mountain building episode. Examples are found near the North American Cordillera, the Alps, the Pyrenees and the Carpathians.

↑ Return to Menu

Shale in the context of Toarcian Oceanic Anoxic Event

The Toarcian extinction event, also called the Pliensbachian-Toarcian extinction event, the Early Toarcian mass extinction, the Early Toarcian palaeoenvironmental crisis, or the Jenkyns Event, was an extinction event that occurred during the early part of the Toarcian age, approximately 183 million years ago, during the Early Jurassic. The extinction event had two main pulses, the first being the Pliensbachian-Toarcian boundary event (PTo-E). The second, larger pulse, the Toarcian Oceanic Anoxic Event (TOAE), was a global oceanic anoxic event, representing possibly the most extreme case of widespread ocean deoxygenation in the entire Phanerozoic eon. In addition to the PTo-E and TOAE, there were multiple other, smaller extinction pulses within this span of time.

Occurring during the supergreenhouse climate of the Early Toarcian Thermal Maximum (ETTM), the Early Toarcian extinction was associated with large igneous province volcanism, which elevated global temperatures, acidified the oceans, and prompted the development of anoxia, leading to severe biodiversity loss. The biogeochemical crisis is documented by a high amplitude negative carbon isotope excursions, as well as black shale deposition.

↑ Return to Menu

Shale in the context of Anoxic event

An anoxic event describes a period wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic (anoxic and sulfidic) waters. Although anoxic events have not happened for millions of years, the geologic record shows that they happened many times in the past. Anoxic events coincided with several mass extinctions and may have contributed to them. These mass extinctions include some that geobiologists use as time markers in biostratigraphic dating. On the other hand, there are widespread, various black-shale beds from the mid-Cretaceous which indicate anoxic events but are not associated with mass extinctions. Many geologists believe oceanic anoxic events are strongly linked to the slowing of ocean circulation, climatic warming, and elevated levels of greenhouse gases. Researchers have proposed enhanced volcanism (the release of CO2) as the "central external trigger for euxinia."

Human activities in the Holocene epoch, such as the release of nutrients from farms and sewage, cause relatively small-scale dead zones around the world. British oceanologist and atmospheric scientist Andrew Watson says full-scale ocean anoxia would take "thousands of years to develop." The idea that modern climate change could lead to such an event is also referred to as Kump's hypothesis.

↑ Return to Menu

Shale in the context of Coastline of Wales

The coastline of Wales extends from the English border at Chepstow westwards to Pembrokeshire then north to Anglesey and back eastwards to the English border once again near Flint. Its character is determined by multiple factors, including the local geology and geological processes active during and subsequent to the last ice age, its relative exposure to or shelter from waves, tidal variation and the history of human settlement and development which varies considerably from one place to another. The majority of the coast east of Cardiff in the south, and of Llandudno in the north, is flat whilst that to the west is more typically backed by cliffs. The cliffs are a mix of sandstones, shales and limestones, the erosion of which provides material for beach deposits. Of the twenty-two principal areas which deliver local government in Wales, sixteen have a coastline, though that of Powys consists only of a short section of tidal river some distance from the open sea. Its length (including Anglesey) has been estimated at 1,680 miles (2,700 km).

↑ Return to Menu