Shale in the context of Geomorphic


Shale in the context of Geomorphic

Shale Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Shale in the context of "Geomorphic"


⭐ Core Definition: Shale

Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g., kaolin, Al2Si2O5(OH)4) and tiny fragments (silt-sized particles) of other minerals, especially quartz and calcite. Shale is characterized by its tendency to split into thin layers (laminae) less than one centimeter in thickness. This property is called fissility. Shale is the most common sedimentary rock.

The term shale is sometimes applied more broadly, as essentially a synonym for mudrock, rather than in the narrower sense of clay-rich fissile mudrock.

↓ Menu
HINT:

In this Dossier

Shale in the context of Siltstone

Siltstone, also known as aleurolite, is a clastic sedimentary rock that is composed mostly of silt. It is a form of mudrock with a low clay mineral content, which can be distinguished from shale by its lack of fissility.

Although its permeability and porosity is relatively low, siltstone is sometimes a tight gas reservoir rock, an unconventional reservoir for methane gas that requires hydraulic fracturing for economic gas production.

View the full Wikipedia page for Siltstone
↑ Return to Menu

Shale in the context of Marker horizon

Marker horizons (also referred to as chronohorizons, key beds or marker beds) are stratigraphic units of the same age and of such distinctive composition and appearance, that, despite their presence in separate geographic locations, there is no doubt about their being of equivalent age (isochronous) and of common origin. Such clear markers facilitate the correlation of strata, and used in conjunction with fossil floral and faunal assemblages and paleomagnetism, permit the mapping of land masses and bodies of water throughout the history of the earth. They usually consist of a relatively thin layer of sedimentary rock that is readily recognized on the basis of either its distinct physical characteristics or fossil content and can be mapped over a very large geographic area. As a result, a key bed is useful for correlating sequences of sedimentary rocks over a large area. Typically, key beds were created as the result of either instantaneous events or (geologically speaking) very short episodes of the widespread deposition of a specific types of sediment. As the result, key beds often can be used for both mapping and correlating sedimentary rocks and dating them. Volcanic ash beds (tonsteins and bentonite beds) and impact spherule beds, and specific megaturbidites are types of key beds created by instantaneous events. The widespread accumulation of distinctive sediments over a geologically short period of time have created key beds in the form of peat beds, coal beds, shell beds, marine bands, black shales in cyclothems, and oil shales. A well-known example of a key bed is the global layer of iridium-rich impact ejecta that marks the Cretaceous–Paleogene boundary (K–T boundary).

Palynology, the study of fossil pollens and spores, routinely works out the stratigraphy of rocks by comparing pollen and spore assemblages with those of well-known layers—a tool frequently used by petroleum exploration companies in the search for new fields. The fossilised teeth or elements of conodonts are an equally useful tool.

View the full Wikipedia page for Marker horizon
↑ Return to Menu

Shale in the context of Slate

Slate is a fine-grained, foliated, homogeneous, metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade, regional metamorphism. It is the finest-grained foliated metamorphic rock. Foliation may not correspond to the original sedimentary layering, but instead is in planes perpendicular to the direction of metamorphic compression.

The foliation in slate, called "slaty cleavage", is caused by strong compression in which fine-grained clay forms flakes to regrow in planes perpendicular to the compression. When expertly "cut" by striking parallel to the foliation with a specialized tool in the quarry, many slates display a property called fissility, forming smooth, flat sheets of stone which have long been used for roofing, floor tiles, and billiard tables. Slate is frequently grey in color, especially when seen en masse covering roofs. However, slate occurs in a variety of colors even from a single locality; for example, slate from North Wales can be found in many shades of grey, from pale to dark, and may also be purple, green, or cyan. Slate is not to be confused with shale, from which it may be formed, or schist.

View the full Wikipedia page for Slate
↑ Return to Menu

Shale in the context of Geomorphology

Geomorphology (from Ancient Greek γῆ () 'earth' μορφή (morphḗ) 'form' and λόγος (lógos) 'study') is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

View the full Wikipedia page for Geomorphology
↑ Return to Menu

Shale in the context of Schist

Schist (/ˈʃɪst/ SHIST) is a medium-grained metamorphic rock generally derived from fine-grained sedimentary rock, like shale. It shows pronounced schistosity (named for the rock). This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes or plates. This texture reflects a high content of platy minerals, such as mica, talc, chlorite, or graphite. These are often interleaved with more granular minerals, such as feldspar or quartz.

Schist typically forms during regional metamorphism accompanying the process of mountain building (orogeny) and usually reflects a medium grade of metamorphism. Schist can form from many different kinds of rocks, including sedimentary rocks such as mudstones and igneous rocks such as tuffs. Schist metamorphosed from mudstone is particularly common and is often very rich in mica (a mica schist). Where the type of the original rock (the protolith) is discernible, the schist is usually given a name reflecting its protolith, such as schistose metasandstone. Otherwise, the names of the constituent minerals will be included in the rock name, such as quartz-felspar-biotite schist.

View the full Wikipedia page for Schist
↑ Return to Menu

Shale in the context of Flysch

Flysch (/flɪʃ/) is a sequence of sedimentary rock layers that progress from deep-water and turbidity flow deposits to shallow-water shales and sandstones. It is deposited when a deep basin forms rapidly on the continental side of a mountain building episode. Examples are found near the North American Cordillera, the Alps, the Pyrenees and the Carpathians.

View the full Wikipedia page for Flysch
↑ Return to Menu

Shale in the context of Toarcian Oceanic Anoxic Event

The Toarcian extinction event, also called the Pliensbachian-Toarcian extinction event, the Early Toarcian mass extinction, the Early Toarcian palaeoenvironmental crisis, or the Jenkyns Event, was an extinction event that occurred during the early part of the Toarcian age, approximately 183 million years ago, during the Early Jurassic. The extinction event had two main pulses, the first being the Pliensbachian-Toarcian boundary event (PTo-E). The second, larger pulse, the Toarcian Oceanic Anoxic Event (TOAE), was a global oceanic anoxic event, representing possibly the most extreme case of widespread ocean deoxygenation in the entire Phanerozoic eon. In addition to the PTo-E and TOAE, there were multiple other, smaller extinction pulses within this span of time.

Occurring during the supergreenhouse climate of the Early Toarcian Thermal Maximum (ETTM), the Early Toarcian extinction was associated with large igneous province volcanism, which elevated global temperatures, acidified the oceans, and prompted the development of anoxia, leading to severe biodiversity loss. The biogeochemical crisis is documented by a high amplitude negative carbon isotope excursions, as well as black shale deposition.

View the full Wikipedia page for Toarcian Oceanic Anoxic Event
↑ Return to Menu

Shale in the context of Anoxic event

An anoxic event describes a period wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic (anoxic and sulfidic) waters. Although anoxic events have not happened for millions of years, the geologic record shows that they happened many times in the past. Anoxic events coincided with several mass extinctions and may have contributed to them. These mass extinctions include some that geobiologists use as time markers in biostratigraphic dating. On the other hand, there are widespread, various black-shale beds from the mid-Cretaceous which indicate anoxic events but are not associated with mass extinctions. Many geologists believe oceanic anoxic events are strongly linked to the slowing of ocean circulation, climatic warming, and elevated levels of greenhouse gases. Researchers have proposed enhanced volcanism (the release of CO2) as the "central external trigger for euxinia."

Human activities in the Holocene epoch, such as the release of nutrients from farms and sewage, cause relatively small-scale dead zones around the world. British oceanologist and atmospheric scientist Andrew Watson says full-scale ocean anoxia would take "thousands of years to develop." The idea that modern climate change could lead to such an event is also referred to as Kump's hypothesis.

View the full Wikipedia page for Anoxic event
↑ Return to Menu

Shale in the context of Coastline of Wales

The coastline of Wales extends from the English border at Chepstow westwards to Pembrokeshire then north to Anglesey and back eastwards to the English border once again near Flint. Its character is determined by multiple factors, including the local geology and geological processes active during and subsequent to the last ice age, its relative exposure to or shelter from waves, tidal variation and the history of human settlement and development which varies considerably from one place to another. The majority of the coast east of Cardiff in the south, and of Llandudno in the north, is flat whilst that to the west is more typically backed by cliffs. The cliffs are a mix of sandstones, shales and limestones, the erosion of which provides material for beach deposits. Of the twenty-two principal areas which deliver local government in Wales, sixteen have a coastline, though that of Powys consists only of a short section of tidal river some distance from the open sea. Its length (including Anglesey) has been estimated at 1,680 miles (2,700 km).

View the full Wikipedia page for Coastline of Wales
↑ Return to Menu

Shale in the context of Mud

Mud (from Middle Low German mudde, mod(de) 'thick mud', or Middle Dutch) is loam, silt or clay mixed with water. Mud is usually formed after rainfall or near water sources. Ancient mud deposits hardened over geological time to form sedimentary rock such as shale or mudstone (generally called lutites). When geological deposits of mud are formed in estuaries, the resultant layers are termed bay muds. Mud has also been used for centuries as a construction resource for mostly houses and also used as a binder. An Old English word for it was fen, now in most dialects referring to a type of wetland.

View the full Wikipedia page for Mud
↑ Return to Menu

Shale in the context of Mudrock

Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone and shale. Most of the particles of which the stone is composed are less than 116 mm (0.0625 mm; 0.00246 in) and are too small to study readily in the field. At first sight, the rock types appear quite similar; however, there are important differences in composition and nomenclature.

There has been a great deal of disagreement involving the classification of mudrocks. A few important hurdles to their classification include the following:

View the full Wikipedia page for Mudrock
↑ Return to Menu

Shale in the context of Fissility (geology)

In geology, fissility is the ability or tendency of a rock to split along flat planes of weakness (“parting surfaces”). These planes of weakness are oriented parallel to stratification in sedimentary rocks. Fissility is differentiated from scaly fabric in hand sample by the parting surfaces’ continuously parallel orientations to each other and to stratification. Fissility is distinguished from scaly fabric in thin section by the well-developed orientation of platy minerals such as mica. Fissility is the result of sedimentary or metamorphic processes.

Planes of weakness are developed in sedimentary rocks such as shale or mudstone by clay particles aligning during compaction. Planes of weakness are developed in metamorphic rocks by the recrystallization and growth of micaceous minerals. A rock's fissility can be degraded in numerous ways during the geologic process, including clay particles flocculating into a random fabric before compaction, bioturbation during compaction, and weathering during and after uplift. The effect of bioturbation has been documented well in shale cores sampled: past variable critical depths where burrowing organisms can no longer survive, shale fissility will become more pervasive and better defined.

View the full Wikipedia page for Fissility (geology)
↑ Return to Menu

Shale in the context of Brickworks

A brickworks, also known as a brick factory, is a factory for the manufacturing of bricks, from clay or shale. Usually a brickworks is located on a clay bedrock (the most common material from which bricks are made), often with a quarry for clay on site. In earlier times bricks were made at brickfields, which would be returned to agricultural use after the clay layer was exhausted.

View the full Wikipedia page for Brickworks
↑ Return to Menu

Shale in the context of Marine band (geology)

A marine band, in geology, is a bed of rock, commonly black or dark grey shale, containing an abundance of fossils of marine organisms. These strata represent episodes of flooding by seawater and are important in enabling the comparison or correlation of rock sequences in different localities.

View the full Wikipedia page for Marine band (geology)
↑ Return to Menu

Shale in the context of Sill (geology)

In geology, a sill is a tabular sheet intrusion that has intruded between older layers of sedimentary rock, beds of volcanic lava or tuff, or along the direction of foliation in metamorphic rock. A sill is a concordant intrusive sheet, meaning that it does not cut across preexisting rock beds. Stacking of sills builds a sill complex and a large magma chamber at high magma flux. In contrast, a dike is a discordant intrusive sheet, which does cut across older rocks.

View the full Wikipedia page for Sill (geology)
↑ Return to Menu

Shale in the context of Tight oil

Tight oil (also known as shale oil, shale-hosted oil or light tight oil, abbreviated LTO) is light crude oil contained in unconventional petroleum-bearing formations of low permeability, often shale or tight sandstone. Economic production from tight oil formations requires the same hydraulic fracturing and often uses the same horizontal well technology used in the production of shale gas. While sometimes called "shale oil", tight oil should not be confused with oil shale (shale rich in kerogen) or shale oil (oil produced from oil shales). Therefore, the International Energy Agency recommends using the term "light tight oil" for oil produced from shales or other very low permeability formations, while the World Energy Resources 2013 report by the World Energy Council uses the terms "tight oil" and "shale-hosted oil".

In May 2013 the International Energy Agency in its Medium-Term Oil Market Report (MTOMR) said that the North American oil production surge led by unconventional oils—US light tight oil (LTO) and Canadian oil sands—had produced a global supply shock that would reshape the way oil is transported, stored, refined and marketed.

View the full Wikipedia page for Tight oil
↑ Return to Menu

Shale in the context of Pierre Shale

The Pierre Shale is a geologic formation or series in the Upper Cretaceous which occurs east of the Rocky Mountains in the Great Plains, from Pembina Valley in Canada to New Mexico.

The Pierre Shale was described by Meek and Hayden in 1862 in the Proceedings of the Academy of Sciences (Philadelphia). They described it as a dark-gray shale, fossiliferous, with veins and seams of gypsum, and concretions of iron oxide. The Pierre Shale is about 3,138 feet (956m) thick at the type locality. It overlies the Niobrara division and underlies the Fox Hills beds. It was named for an occurrence near Fort Pierre on the Missouri River in South Dakota.

View the full Wikipedia page for Pierre Shale
↑ Return to Menu

Shale in the context of Eagle Ford Group

The Eagle Ford Group (also called the Eagle Ford Shale) is a sedimentary rock formation deposited during the Cenomanian and Turonian ages of the Late Cretaceous over much of the modern-day state of Texas. The Eagle Ford is predominantly composed of organic matter-rich fossiliferous marine shales and marls with interbedded thin limestones. It derives its name from outcrops on the banks of the West Fork of the Trinity River near the old community of Eagle Ford, which is now a neighborhood within the city of Dallas. The Eagle Ford outcrop belt trends from the Oklahoma-Texas border southward to San Antonio, westward to the Rio Grande, Big Bend National Park, and the Quitman Mountains of West Texas. It also occurs in the subsurface of East Texas and South Texas, where it is the source rock for oil found in the Woodbine, Austin Chalk, and the Buda Limestone, and is produced unconventionally in South Texas and the "Eaglebine" play of East Texas.

The Eagle Ford was one of the most actively drilled targets for unconventional oil and gas in the United States in 2010, but its output had dropped sharply by 2015. By the summer of 2016, Eagle Ford spending had dropped by two-thirds from $30 billion in 2014 to $10 billion, according to an analysis from the research firm Wood Mackenzie. This strike has been the hardest hit of any oil fields in the world. As of 2016, the spending was, however, expected to increase to $11.6 billion in 2017. A full recovery was not expected any time soon.

View the full Wikipedia page for Eagle Ford Group
↑ Return to Menu