Set (mathematics) in the context of "Antisymmetric relation"

Play Trivia Questions online!

or

Skip to study material about Set (mathematics) in the context of "Antisymmetric relation"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Set (mathematics) in the context of Platonism

Platonism is the philosophy of Plato and philosophical systems closely derived from it, though later and contemporary Platonists do not necessarily accept all of Plato's own doctrines. Platonism has had a profound effect on Western thought. At the most fundamental level, Platonism affirms the existence of abstract objects, which are asserted to exist in a third realm distinct from both the sensible external world and from the internal world of consciousness, and is the opposite of nominalism. This can apply to properties, types, propositions, meanings, numbers, sets, truth values, and so on (see abstract object theory). Philosophers who affirm the existence of abstract objects are sometimes called Platonists; those who deny their existence are sometimes called nominalists. The terms "Platonism" and "nominalism" also have established senses in the history of philosophy. They denote positions that have little to do with the modern notion of an abstract object.

In a narrower sense, the term might indicate the doctrine of Platonic realism, a form of mysticism. The central concept of Platonism, a distinction essential to the Theory of Forms, is the distinction between the reality which is perceptible but unintelligible, associated with the flux of Heraclitus and studied by the likes of physical science, and the reality which is imperceptible but intelligible, associated with the unchanging being of Parmenides and studied by the likes of mathematics. Geometry was the main motivation of Plato, and this also shows the influence of Pythagoras. The Forms are typically described in dialogues such as the Phaedo, Symposium and Republic as perfect archetypes of which objects in the everyday world are imperfect copies. Aristotle's Third Man Argument is its most famous criticism in antiquity.

↑ Return to Menu

Set (mathematics) in the context of Abstract objects

In philosophy and the arts, a fundamental distinction exists between abstract and concrete entities. While there is no universally accepted definition, common examples illustrate the difference: numbers, sets, and ideas are typically classified as abstract objects, whereas plants, dogs, and planets are considered concrete objects.

Philosophers have proposed several criteria to define this distinction:

↑ Return to Menu

Set (mathematics) in the context of Set theory

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of naive set theory. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied.

↑ Return to Menu

Set (mathematics) in the context of Mathematical object

A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a symbol, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, expressions, shapes, functions, and sets. Mathematical objects can be very complex; for example, theorems, proofs, and even formal theories are considered as mathematical objects in proof theory.

In philosophy of mathematics, the concept of "mathematical objects" touches on topics of existence, identity, and the nature of reality. In metaphysics, objects are often considered entities that possess properties and can stand in various relations to one another. Philosophers debate whether mathematical objects have an independent existence outside of human thought (realism), or if their existence is dependent on mental constructs or language (idealism and nominalism). Objects can range from the concrete: such as physical objects usually studied in applied mathematics, to the abstract, studied in pure mathematics. What constitutes an "object" is foundational to many areas of philosophy, from ontology (the study of being) to epistemology (the study of knowledge). In mathematics, objects are often seen as entities that exist independently of the physical world, raising questions about their ontological status. There are varying schools of thought which offer different perspectives on the matter, and many famous mathematicians and philosophers each have differing opinions on which is more correct.

↑ Return to Menu

Set (mathematics) in the context of Premise

A premise or premiss is a proposition—a true or false declarative statement—used in an argument to prove the truth of another proposition called the conclusion. Arguments consist of a set of premises and a conclusion.

An argument is meaningful for its conclusion only when all of its premises are true. If one or more premises are false, the argument says nothing about whether the conclusion is true or false. For instance, a false premise on its own does not justify rejecting an argument's conclusion; to assume otherwise is a logical fallacy called denying the antecedent. One way to prove that a proposition is false is to formulate a sound argument with a conclusion that negates that proposition.

↑ Return to Menu

Set (mathematics) in the context of Number

A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers: 1, 2, 3, 4, 5, and so forth. Individual numbers can be represented in language with number words or by dedicated symbols called numerals; for example, "five" is a number word and "5" is the corresponding numeral. As only a limited list of symbols can be memorized, a numeral system is used to represent any number in an organized way. The most common representation is the Hindu–Arabic numeral system, which can display any non-negative integer using a combination of ten symbols, called numerical digits. Numerals can be used for counting (as with cardinal number of a collection or set), labels (as with telephone numbers), for ordering (as with serial numbers), and for codes (as with ISBNs). In common usage, a numeral is not clearly distinguished from the number that it represents.

In mathematics, the notion of number has been extended over the centuries to include zero (0), negative numbers, rational numbers such as one half , real numbers such as the square root of 2 , and π, and complex numbers which extend the real numbers with a square root of −1, and its combinations with real numbers by adding or subtracting its multiples. Calculations with numbers are done with arithmetical operations, the most familiar being addition, subtraction, multiplication, division, and exponentiation. Their study or usage is called arithmetic, a term which may also refer to number theory, the study of the properties of numbers.

↑ Return to Menu

Set (mathematics) in the context of Zermelo–Fraenkel set theory

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing urelements (elements that are not themselves sets). Furthermore, proper classes (collections of mathematical objects defined by a property shared by their members where the collections are too big to be sets) can only be treated indirectly. Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes.

↑ Return to Menu

Set (mathematics) in the context of Conic sections

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a focus, and some particular line, called a directrix, are in a fixed ratio, called the eccentricity. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2; that is, as the set of points whose coordinates satisfy a quadratic equation in two variables which can be written in the form The geometric properties of the conic can be deduced from its equation.

↑ Return to Menu