Sensors


Sensors

Sensors Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Sensors


⭐ Core Definition: Sensors

A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal.

In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends the information to other electronics, frequently a computer processor.

↓ Menu
HINT:

In this Dossier

Sensors in the context of Electro-mechanical games

Electro-mechanical games (EM games) are types of arcade games that operate on a combination of some electronic circuitry and mechanical actions from the player to move items contained within the game's cabinet. Some of these were early light gun games using light-sensitive sensors on targets to register hits, while others were simulation games such as driving games, combat flight simulators and sports games. EM games were popular in amusement arcades from the late 1940s up until the 1970s, serving as alternatives to pinball machines, which had been stigmatized as games of chance during that period. EM games lost popularity in the 1970s, as arcade video games had emerged to replace them in addition to newer pinball machines designed as games of skill.

View the full Wikipedia page for Electro-mechanical games
↑ Return to Menu

Sensors in the context of Control engineering


Control engineering, also known as control systems engineering and, in some European countries, automation engineering, is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering, chemical engineering and mechanical engineering at many institutions around the world.

The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance. Systems designed to perform without requiring human input are called automatic control systems (such as cruise control for regulating the speed of a car). Multi-disciplinary in nature, control systems engineering activities focus on implementation of control systems mainly derived by mathematical modeling of a diverse range of systems.

View the full Wikipedia page for Control engineering
↑ Return to Menu

Sensors in the context of Analytical chemistry

Analytical chemistry (or chemical analysis) is the branch of chemistry concerned with the development and application of methods to identify the chemical composition of materials and quantify the amounts of components in mixtures. It focuses on methods to identify unknown compounds, possibly in a mixture or solution, and quantify a compound's presence in terms of amount of substance (in any phase), concentration (in aqueous or solution phase), percentage by mass or number of moles in a mixture of compounds (or partial pressure in the case of gas phase).

It encompasses both classical techniques (e.g. titration, gravimetric analysis) and modern instrumental approaches (e.g. spectroscopy, chromatography, mass spectrometry, electrochemical methods). Modern analytical chemistry is deeply intertwined with data analysis and chemometrics, and is increasingly shaped by trends such as automation, miniaturization, and real-time sensing, with applications across fields as diverse as biochemistry, medicinal chemistry, forensic science, archaeology, nutritional science, agricultural chemistry, chemical synthesis, metallurgy, chemical engineering and materials science.

View the full Wikipedia page for Analytical chemistry
↑ Return to Menu

Sensors in the context of Optical engineering

Optical engineering is the field of engineering encompassing the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and utilization of light. Optical engineers use the science of optics to solve problems and to design and build devices that make light do something useful. They design and operate optical equipment that uses the properties of light using physics and chemistry, such as lenses, microscopes, telescopes, lasers, sensors, fiber-optic communication systems and optical disc systems (e.g. CD, DVD).

Optical engineering metrology uses optical methods to measure either micro-vibrations with instruments like the laser speckle interferometer, or properties of masses with instruments that measure refraction.

View the full Wikipedia page for Optical engineering
↑ Return to Menu

Sensors in the context of Unmanned tank

An unmanned ground vehicle (UGV) also known colloquially as armored robot (ARB) is a vehicle that operates while in contact with the ground without an onboard human presence. UGVs can be used for many applications where it is inconvenient, dangerous, expensive, or impossible to use an onboard human operator. Typically, the vehicle has sensors to observe the environment, and autonomously controls its behavior or uses a remote human operator to control the vehicle via teleoperation.

The UGV is the land-based counterpart to unmanned aerial vehicles, unmanned underwater vehicles and unmanned surface vehicles. Unmanned robots are used in war and by civilians.

View the full Wikipedia page for Unmanned tank
↑ Return to Menu

Sensors in the context of Smart materials

Smart materials, also called intelligent or responsive materials, are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, moisture, electric or magnetic fields, light, temperature, pH, or chemical compounds. Smart materials are the basis of many applications, including sensors and actuators, or artificial muscles, particularly as electroactive polymers (EAPs).

View the full Wikipedia page for Smart materials
↑ Return to Menu

Sensors in the context of Silicon nanowire

Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors. Initial synthesis of SiNWs is often accompanied by thermal oxidation steps to yield structures of accurately tailored size and morphology.

SiNWs have unique properties that are not seen in bulk (three-dimensional) silicon materials. These properties arise from an unusual quasi one-dimensional electronic structure and are the subject of research across numerous disciplines and applications. The reason that SiNWs are considered one of the most important one-dimensional materials is they could have a function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. SiNWs are frequently studied towards applications including photovoltaics, nanowire batteries, thermoelectrics and non-volatile memory.

View the full Wikipedia page for Silicon nanowire
↑ Return to Menu