Semiconductor luminescence equations in the context of "Quantum-optical spectroscopy"

Play Trivia Questions online!

or

Skip to study material about Semiconductor luminescence equations in the context of "Quantum-optical spectroscopy"




⭐ Core Definition: Semiconductor luminescence equations

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

Due to randomness of the vacuum-field fluctuations, semiconductor luminescence is incoherent whereas the extensions of the SLEs include the possibility to study resonance fluorescence resulting from optical pumping with coherent laser light. At this level, one is often interested to control and access higher-order photon-correlation effects, distinct many-body states, as well as light–semiconductor entanglement. Such investigations are the basis of realizing and developing the field of quantum-optical spectroscopy which is a branch of quantum optics.

↓ Menu

In this Dossier

Semiconductor luminescence equations in the context of Photoluminescence

Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photons that excite electrons to a higher energy level in an atom), hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors or metals up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

Observation of photoluminescence at a certain energy can be viewed as an indication that an electron transitioned between states separated by this transition energy. While this is generally true in atoms and similar systems, correlations and other more complex phenomena also act as sources for photoluminescence in many-body systems such as semiconductors or metals. A theoretical approach to handle this is given by the semiconductor luminescence equations.

↑ Return to Menu