Self-organisation in the context of Neural circuit


Self-organisation in the context of Neural circuit

Self-organisation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Self-organisation in the context of "Neural circuit"


⭐ Core Definition: Self-organisation

Self-organization, also called spontaneous order in the social sciences, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when sufficient energy is available, not needing control by any external agent. It is often triggered by seemingly random fluctuations, amplified by positive feedback. The resulting organization is wholly decentralized, distributed over all the components of the system. As such, the organization is typically robust and able to survive or self-repair substantial perturbation. Chaos theory discusses self-organization in terms of islands of predictability in a sea of chaotic unpredictability.

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Examples of self-organization include crystallization, thermal convection of fluids, chemical oscillation, animal swarming, neural circuits, and black markets.

↓ Menu
HINT:

In this Dossier

Self-organisation in the context of Élan vital

Élan vital (French pronunciation: [elɑ̃ vital]) is a term coined by French philosopher Henri Bergson in his 1907 book Creative Evolution, in which he addresses the question of self-organisation and spontaneous morphogenesis of things in an increasingly complex manner. Élan vital was translated in the English edition as "vital impetus", but is usually translated by his detractors as "vital force". It is a hypothetical explanation for evolution and development of organisms, which Bergson linked closely with consciousness – the intuitive perception of experience and the flow of inner time.

View the full Wikipedia page for Élan vital
↑ Return to Menu

Self-organisation in the context of Structuralism (biology)

Biological or process structuralism is a school of biological thought that objects to an exclusively Darwinian or adaptationist explanation of natural selection such as is described in the 20th century's modern synthesis. It proposes instead that evolution is guided differently, by physical forces which shape the development of an animal's body, and sometimes implies that these forces supersede selection altogether.

Structuralists have proposed different mechanisms that might have guided the formation of body plans. Before Darwin, Étienne Geoffroy Saint-Hilaire argued that animals shared homologous parts, and that if one was enlarged, the others would be reduced in compensation. After Darwin, D'Arcy Thompson hinted at vitalism and offered geometric explanations in his classic 1917 book On Growth and Form. Adolf Seilacher suggested mechanical inflation for "pneu" structures in Ediacaran biota fossils such as Dickinsonia. Günter P. Wagner argued for developmental bias, structural constraints on embryonic development. Stuart Kauffman favoured self-organisation, the idea that complex structure emerges holistically and spontaneously from the dynamic interaction of all parts of an organism. Michael Denton argued for laws of form by which Platonic universals or "Types" are self-organised. Stephen J. Gould and Richard Lewontin proposed biological "spandrels", features created as a byproduct of the adaptation of nearby structures. Gerd B. Müller and Stuart A. Newman argued that the appearance in the fossil record of most of the phyla in the Cambrian explosion was "pre-Mendelian" evolution caused by physical factors. Brian Goodwin, described by Wagner as part of "a fringe movement in evolutionary biology", denies that biological complexity can be reduced to natural selection, and argues that pattern formation is driven by morphogenetic fields.

View the full Wikipedia page for Structuralism (biology)
↑ Return to Menu