Self-adjoint operator in the context of Inner product


Self-adjoint operator in the context of Inner product

Self-adjoint operator Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Self-adjoint operator in the context of "Inner product"


⭐ Core Definition: Self-adjoint operator

In mathematics, a self-adjoint operator on a complex vector space with inner product is a linear map (from to itself) that is its own adjoint. That is, for all . If is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of is a Hermitian matrix, i.e., equal to its conjugate transpose . By the finite-dimensional spectral theorem, has an orthonormal basis such that the matrix of relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as position, momentum, angular momentum and spin are represented by self-adjoint operators on a Hilbert space. Of particular significance is the Hamiltonian operator defined by

↓ Menu
HINT:

In this Dossier

Self-adjoint operator in the context of Spectral measure

In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

Projection-valued measures are used to express results in spectral theory, such as the important spectral theorem for self-adjoint operators, in which case the PVM is sometimes referred to as the spectral measure. The Borel functional calculus for self-adjoint operators is constructed using integrals with respect to PVMs. In quantum mechanics, PVMs are the mathematical description of projective measurements. They are generalized by positive operator valued measures (POVMs) in the same sense that a mixed state or density matrix generalizes the notion of a pure state.

View the full Wikipedia page for Spectral measure
↑ Return to Menu

Self-adjoint operator in the context of CPT symmetry

Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry. In layman terms, this stipulates that an antimatter, mirrored, and time reversed universe would behave exactly the same as our regular universe.

View the full Wikipedia page for CPT symmetry
↑ Return to Menu

Self-adjoint operator in the context of Spectral theorem

In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

Examples of operators to which the spectral theorem applies are self-adjoint operators or more generally normal operators on Hilbert spaces.

View the full Wikipedia page for Spectral theorem
↑ Return to Menu