Selectable marker in the context of Transfection


Selectable marker in the context of Transfection

Selectable marker Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Selectable marker in the context of "Transfection"


⭐ Core Definition: Selectable marker

A selectable marker is a gene introduced into cells, especially bacteria or cells in culture, which confers one or more traits suitable for artificial selection. They are a type of reporter gene used in laboratory microbiology, molecular biology, and genetic engineering to indicate the success of a transfection or transformation or other procedure meant to introduce foreign DNA into a cell. Selectable markers are often antibiotic resistance genes: bacteria subjected to a procedure by which exogenous DNA containing an antibiotic resistance gene (usually alongside other genes of interest) has been introduced are grown on a medium containing an antibiotic, such that only those bacterial cells which have successfully taken up and expressed the introduced genetic material, including the gene which confers antibiotic resistance, can survive and produce colonies. The genes encoding resistance to antibiotics such as ampicillin, chloramphenicol, tetracycline, kanamycin, etc., are all widely used as selectable markers for molecular cloning and other genetic engineering techniques in E. coli.

↓ Menu
HINT:

In this Dossier

Selectable marker in the context of Vector (molecular biology)

In molecular cloning, a vector is any particle (e.g., plasmids, cosmids, Lambda phages) used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are the origin of replication, a multicloning site, and a selectable marker.

The vector itself generally carries a DNA sequence that consists of an insert (in this case the transgene) and a larger sequence that serves as the "backbone" of the vector. The purpose of a vector which transfers genetic information to another cell is typically to isolate, multiply, or express the insert in the target cell. All vectors may be used for cloning and are therefore cloning vectors, but there are also vectors designed specially for cloning, while others may be designed specifically for other purposes, such as transcription and protein expression. Vectors designed specifically for the expression of the transgene in the target cell are called expression vectors, and generally have a promoter sequence that drives the expression of the transgene. Simpler vectors called transcription vectors are only capable of being transcribed but not translated: they can be replicated in a target cell but not expressed, unlike expression vectors. Transcription vectors are used to amplify their insert.

View the full Wikipedia page for Vector (molecular biology)
↑ Return to Menu

Selectable marker in the context of Genetically modified organism

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), including animals, plants, and microorganisms.

Genetic modification can include the introduction of new genes or enhancing, altering, or knocking out endogenous genes. In some genetic modifications, genes are transferred within the same species, across species (creating transgenic organisms), and even across kingdoms. Creating a genetically modified organism is a multi-step process. Genetic engineers must isolate the gene they wish to insert into the host organism and combine it with other genetic elements, including a promoter and terminator region and often a selectable marker. A number of techniques are available for inserting the isolated gene into the host genome. Recent advancements using genome editing techniques, notably CRISPR, have made the production of GMOs much simpler. Herbert Boyer and Stanley Cohen made the first genetically modified organism in 1973, a bacterium resistant to the antibiotic kanamycin. The first genetically modified animal, a mouse, was created in 1974 by Rudolf Jaenisch, and the first plant was produced in 1983. In 1994, the Flavr Savr tomato was released, the first commercialized genetically modified food. The first genetically modified animal to be commercialized was the GloFish (2003) and the first genetically modified animal to be approved for food use was the AquAdvantage salmon in 2015.

View the full Wikipedia page for Genetically modified organism
↑ Return to Menu