Secondary mineral in the context of Thaumasite


Secondary mineral in the context of Thaumasite

⭐ Core Definition: Secondary mineral

A primary mineral is any mineral formed during the original crystallization of the host igneous primary rock and includes the essential mineral(s) used to classify the rock along with any accessory minerals. In ore deposit geology, hypogene processes occur deep below the Earth's surface, and tend to form deposits of primary minerals, as opposed to supergene processes that occur at or near the surface, and tend to form secondary minerals.

The elemental and mineralogical composition of primary rocks is determined by the chemical composition of the volcanic or magmatic flow from which it is formed. Extrusive rocks (such as basalt, rhyolite, andesite and obsidian) and intrusive rocks (such as granite, granodiorite, gabbro and peridotite) contain primary minerals including quartz, feldspar, plagioclase, muscovite, biotite, amphibole, pyroxene and olivine in varying concentrations. Additionally, primary sulfate minerals occur in igneous rocks. Primary sulfate minerals may occur in veins, these minerals include; hauynite, noselite, barite, anhydrite, gypsum (primary and secondary mineral), celestite, alunite (primary and secondary mineral), creedite, and thaumasite.

↓ Menu
HINT:

In this Dossier

Secondary mineral in the context of Litharge

Litharge (from Greek lithargyros, lithos 'stone' + argyros 'silver' λιθάργυρος) is one of the natural mineral forms of lead(II) oxide, PbO. Litharge is a secondary mineral which forms from the oxidation of galena ores. It forms as coatings and encrustations with internal tetragonal crystal structure. It is dimorphous with the yellow orthorhombic form massicot. It forms soft (Mohs hardness of 2), red, greasy-appearing crusts with a very high specific gravity of 9.14–9.35. PbO may be prepared by heating lead metal in air at approximately 600 °C (lead melts at only 300 °C). At this temperature it is also the end product of heating of other lead oxides in air. This is often done with a set of bellows pumping air over molten lead and causing the oxidized product to slip or fall off the top into a receptacle, where it quickly solidifies in minute scales.

View the full Wikipedia page for Litharge
↑ Return to Menu