Schläfli symbol in the context of "Pentagon"

Play Trivia Questions online!

or

Skip to study material about Schläfli symbol in the context of "Pentagon"




⭐ Core Definition: Schläfli symbol

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more than three dimensions and discovered all their convex regular polytopes, including the six that occur in four dimensions.

↓ Menu

In this Dossier

Schläfli symbol in the context of Octagon

In geometry, an octagon (from Ancient Greek ὀκτάγωνον (oktágōnon) 'eight angles') is an eight-sided polygon or 8-gon.

A regular octagon has Schläfli symbol {8} and can also be constructed as a quasiregular truncated square, t{4}, which alternates two types of edges. A truncated octagon, t{8} is a hexadecagon, {16}. A 3D analog of the octagon can be the rhombicuboctahedron with the triangular faces on it like the replaced edges, if one considers the octagon to be a truncated square.

↑ Return to Menu

Schläfli symbol in the context of Regular polyhedra

A regular polyhedron is a polyhedron with regular and congruent polygons as faces. Its symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra.

↑ Return to Menu

Schläfli symbol in the context of Stellation

In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from the Latin stella, "star".Stellation is the reciprocal or dual process to faceting.

↑ Return to Menu

Schläfli symbol in the context of Hexagram

A hexagram (Greek) or sexagram (Latin) is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. The term is used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon.

The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices. In three dimensions, the analogous compound is the stellated octahedron, and in four dimensions the compound of two 5-cells is obtained.

↑ Return to Menu

Schläfli symbol in the context of Decagram (geometry)

In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}.

The name decagram combines a numeral prefix, deca-, with the Greek suffix -gram. The -gram suffix derives from γραμμῆς (grammēs) meaning a line.

↑ Return to Menu

Schläfli symbol in the context of Hyperbolic small dodecahedral honeycomb

In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations (or honeycombs) of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

↑ Return to Menu

Schläfli symbol in the context of 600-cell

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}.It is also known as the C600, hexacosichoron, hexacosihedroid and hypericosahedron.It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

The 600-cell's boundary is composed of 600 tetrahedral cells with 20 meeting at each vertex.Together they form 1200 triangular faces, 720 edges, and 120 vertices.It is the 4-dimensional analogue of the icosahedron, since it has five tetrahedra meeting at every edge, just as the icosahedron has five triangles meeting at every vertex.Its dual polytope is the 120-cell.

↑ Return to Menu