Satisfiability modulo theories in the context of "Undecidable problem"

Play Trivia Questions online!

or

Skip to study material about Satisfiability modulo theories in the context of "Undecidable problem"

Ad spacer

⭐ Core Definition: Satisfiability modulo theories

In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers). SMT solvers are tools that aim to solve the SMT problem for a practical subset of inputs. SMT solvers such as Z3 and cvc5 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing.

Since Boolean satisfiability is already NP-complete, the SMT problem is typically NP-hard, and for many theories it is undecidable. Researchers study which theories or subsets of theories lead to a decidable SMT problem and the computational complexity of decidable cases. The resulting decision procedures are often implemented directly in SMT solvers; see, for instance, the decidability of Presburger arithmetic. SMT can be thought of as a constraint satisfaction problem and thus a certain formalized approach to constraint programming.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Satisfiability modulo theories in the context of Satisfiability and validity

In mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.

Formally, satisfiability is studied with respect to a fixed logic defining the syntax of allowed symbols, such as first-order logic, second-order logic or propositional logic. Rather than being syntactic, however, satisfiability is a semantic property because it relates to the meaning of the symbols, for example, the meaning of in a formula such as . Formally, we define an interpretation (or model) to be an assignment of values to the variables and an assignment of meaning to all other non-logical symbols, and a formula is said to be satisfiable if there is some interpretation which makes it true. While this allows non-standard interpretations of symbols such as , one can restrict their meaning by providing additional axioms. The satisfiability modulo theories problem considers satisfiability of a formula with respect to a formal theory, which is a (finite or infinite) set of axioms.

↑ Return to Menu

Satisfiability modulo theories in the context of Constraint satisfaction problem

Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject of research in both artificial intelligence and operations research, since the regularity in their formulation provides a common basis to analyze and solve problems of many seemingly unrelated families. CSPs often exhibit high complexity, requiring a combination of heuristics and combinatorial search methods to be solved in a reasonable time. Constraint programming (CP) is the field of research that specifically focuses on tackling these kinds of problems. Additionally, the Boolean satisfiability problem (SAT), satisfiability modulo theories (SMT), mixed integer programming (MIP) and answer set programming (ASP) are all fields of research focusing on the resolution of particular forms of the constraint satisfaction problem.

Examples of problems that can be modeled as a constraint satisfaction problem include:

↑ Return to Menu