Satellite geodesy in the context of "Grade measurement"

Play Trivia Questions online!

or

Skip to study material about Satellite geodesy in the context of "Grade measurement"

Ad spacer

⭐ Core Definition: Satellite geodesy

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Satellite geodesy in the context of Passive satellite

List of passive satellites is a listing of inert or mostly inert satellites, mainly of the Earth. This includes various reflector type satellites typically used for geodesy and atmospheric measurements.

↑ Return to Menu

Satellite geodesy in the context of Geoid

The geoid (/ˈ.ɔɪd/ JEE-oyd) is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents (such as might be approximated with very narrow hypothetical canals). According to Carl Friedrich Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

The geoid is often expressed as a geoid undulation or geoidal height above a given reference ellipsoid, which is a slightly flattened sphere whose equatorial bulge is caused by the planet's rotation. Generally the geoidal height rises where the Earth's material is locally more dense and exerts greater gravitational force than the surrounding areas. The geoid in turn serves as a reference coordinate surface for various vertical coordinates, such as orthometric heights, geopotential heights, and dynamic heights (see Geodesy).

↑ Return to Menu

Satellite geodesy in the context of Geodetic control network

A geodetic control network is a network, often of triangles, that are measured precisely by techniques of control surveying, such as terrestrial surveying or satellite geodesy. It is also known as a geodetic network, reference network, control point network, or simply control network.

A geodetic control network consists of geodetic markers, which are stable, identifiable points or vertices with published coordinate values derived from observations that tie the points together.

↑ Return to Menu

Satellite geodesy in the context of Space geodesy

Space geodesy is geodesy by means of sources external to Earth, mainly artificial satellites (in satellite geodesy) but also quasars (in very-long-baseline interferometry, VLBI), visible stars (in stellar triangulation), and the retroreflectors on the Moon (in lunar laser ranging, LLR).

↑ Return to Menu

Satellite geodesy in the context of Arc measurement

Arc measurement, sometimes called degree measurement (German: Gradmessung), is the astrogeodetic technique of determining the radius of Earth and, by extension, its circumference. More specifically, it seeks to determine the local Earth radius of curvature of the figure of the Earth, by relating the latitude difference (sometimes also the longitude difference) and the geographic distance (arc length) surveyed between two locations on Earth's surface. The most common variant involves only astronomical latitudes and the meridian arc length and is called meridian arc measurement; other variants may involve only astronomical longitude (parallel arc measurement) or both geographic coordinates (oblique arc measurement).Arc measurement campaigns in Europe were the precursors to the International Association of Geodesy (IAG).Nowadays, the method is replaced by worldwide geodetic networks and by satellite geodesy.

↑ Return to Menu