Satellite galaxy in the context of Dwarf galaxies


Satellite galaxy in the context of Dwarf galaxies

Satellite galaxy Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Satellite galaxy in the context of "Dwarf galaxies"


⭐ Core Definition: Satellite galaxy

A satellite galaxy is a smaller companion galaxy that travels on bound orbits within the gravitational potential of a more massive and luminous host galaxy (also known as the primary galaxy). Satellite galaxies and their constituents are bound to their host galaxy, in the same way that planets within the Solar System are gravitationally bound to the Sun. While most satellite galaxies are dwarf galaxies, satellite galaxies of large galaxy clusters can be much more massive. The Milky Way is orbited by about fifty satellite galaxies, the largest of which is the Large Magellanic Cloud.

Moreover, satellite galaxies are not the only astronomical objects that are gravitationally bound to larger host galaxies (see globular clusters). For this reason, astronomers have defined galaxies as gravitationally bound collections of stars that exhibit properties that cannot be explained by a combination of baryonic matter (i.e. ordinary matter) and Newton's laws of gravity. For example, measurements of the orbital speed of stars and gas within spiral galaxies result in a velocity curve that deviates significantly from the theoretical prediction. This observation has motivated various explanations such as the theory of dark matter and modifications to Newtonian dynamics. Therefore, despite also being satellites of host galaxies, globular clusters should not be mistaken for satellite galaxies. Satellite galaxies are not only more extended and diffuse compared to globular clusters, but are also enshrouded in massive dark matter halos that are thought to have been endowed to them during the formation process.

↓ Menu
HINT:

In this Dossier

Satellite galaxy in the context of Supernova

A supernova (pl.: supernovae) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

The last supernova directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not long after Tycho's Supernova in 1572, both of which were visible to the naked eye. Observations of recent supernova remnants within the Milky Way, coupled with studies of supernovae in other galaxies, suggest that these powerful stellar explosions occur in our galaxy approximately three times per century on average. A supernova in the Milky Way would almost certainly be observable through modern astronomical telescopes. The most recent naked-eye supernova was SN 1987A, which was the explosion of a blue supergiant star in the Large Magellanic Cloud, a satellite galaxy of the Milky Way in 1987.

View the full Wikipedia page for Supernova
↑ Return to Menu

Satellite galaxy in the context of Galactic collision

Interacting galaxies (colliding galaxies) are galaxies whose gravitational fields result in a disturbance of one another. Major mergers occur between galaxies with similar amounts of mass, whereas minor mergers involve galaxies with masses that vary significantly. An example of a minor interaction is a satellite galaxy disturbing the primary galaxy's spiral arms. An example of a major interaction is a galactic collision, which may lead to a galaxy merger.

View the full Wikipedia page for Galactic collision
↑ Return to Menu

Satellite galaxy in the context of Galactic tide

A galactic tide is a tidal force experienced by objects subject to the gravitational field of a galaxy such as the Milky Way. Particular areas of interest concerning galactic tides include galactic collisions, the disruption of dwarf or satellite galaxies, and the Milky Way's tidal effect on the Oort cloud of the Solar System.

View the full Wikipedia page for Galactic tide
↑ Return to Menu

Satellite galaxy in the context of SN 1987A

SN 1987A was a Type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs (168,000 light-years) from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987, and it was designated "SN 1987A" as the first supernova discovered that year. Its brightness peaked in May of that year, with an apparent magnitude of about 3, brighter than the constellation's brightest star, Alpha Doradus.

It was the first supernova that modern astronomers were able to study in great detail, and its observations have provided much insight into core-collapse supernovae. SN 1987A provided the first opportunity to confirm by direct observation the radioactive source of the energy for visible light emissions, by detecting predicted gamma-ray line radiation from two of its abundant radioactive nuclei. This proved the radioactive nature of the long-duration post-explosion glow of supernovae.

View the full Wikipedia page for SN 1987A
↑ Return to Menu

Satellite galaxy in the context of Large Magellanic Cloud

The Large Magellanic Cloud (LMC) is a dwarf galaxy and satellite galaxy of the Milky Way. At a distance of around 50 kiloparsecs (163,000 light-years), the LMC is the second- or third-closest galaxy to the Milky Way, after the Sagittarius Dwarf Spheroidal (c. 16 kiloparsecs (52,000 light-years) away) and the possible dwarf irregular galaxy called the Canis Major Overdensity. It is about 9.86 kiloparsecs (32,200 light-years) across, and has roughly one-hundredth the mass of the Milky Way making it the fourth-largest galaxy in the Local Group, after the Andromeda Galaxy (M31), the Milky Way, and the Triangulum Galaxy (M33).

The LMC is classified as a Magellanic spiral. It contains a stellar bar that is geometrically off-center, suggesting that it was once a barred dwarf spiral galaxy before its spiral arms were disrupted, likely by tidal interactions from the nearby Small Magellanic Cloud (SMC) and the Milky Way's gravity. The LMC is predicted to merge with the Milky Way in approximately 2.4 billion years.

View the full Wikipedia page for Large Magellanic Cloud
↑ Return to Menu

Satellite galaxy in the context of List of Milky Way's satellite galaxies

The Milky Way has several smaller galaxies gravitationally bound to it, as part of the Milky Way subgroup, which is part of the local galaxy cluster, the Local Group.

There are 61 small galaxies confirmed to be within 420 kiloparsecs (1.4 million light-years) of the Milky Way, but not all of them are necessarily in orbit, and some may themselves be in orbit of other satellite galaxies. The only ones visible to the naked eye are the Large and Small Magellanic Clouds, which have been observed since prehistory. Measurements with the Hubble Space Telescope in 2006 suggest the Magellanic Clouds may be moving too fast to be orbiting the Milky Way. Of the galaxies confirmed to be in orbit, the largest is the Sagittarius Dwarf Spheroidal Galaxy, which has a diameter of 2.6 kiloparsecs (8,500 ly) or roughly a twentieth that of the Milky Way.

View the full Wikipedia page for List of Milky Way's satellite galaxies
↑ Return to Menu

Satellite galaxy in the context of Sagittarius Dwarf Spheroidal Galaxy

The Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph), also known as the Sagittarius Dwarf Elliptical Galaxy (Sgr dE or Sag DEG), is an elliptical loop-shaped satellite galaxy of the Milky Way. It contains four globular clusters in its main body, with the brightest of them — NGC 6715 (M54) — known well before the discovery of the galaxy itself in 1994. Sgr dSph is roughly 10,000 light-years in diameter, and is currently about 70,000 light-years from Earth, travelling in a polar orbit (an orbit passing over the Milky Way's galactic poles) at a distance of about 50,000 light-years from the core of the Milky Way (about one third of the distance of the Large Magellanic Cloud). In its looping, spiraling path, it has passed through the plane of the Milky Way several times in the past. In 2018, the Gaia project of the European Space Agency showed that Sgr dSph had caused perturbations in a set of stars near the Milky Way's core, causing unexpected rippling movements of the stars triggered when it moved through the Milky Way between 300 and 900 million years ago.

View the full Wikipedia page for Sagittarius Dwarf Spheroidal Galaxy
↑ Return to Menu

Satellite galaxy in the context of Crater 2

Crater 2 is a low-surface-brightness dwarf satellite galaxy of the Milky Way, located approximately 380,000 ly from Earth. Its discovery in 2016 revealed significant gaps in astronomers' understanding of galaxies possessing relatively small half-light diameters and suggested the possibility of many undiscovered dwarf galaxies orbiting the Milky Way. Crater 2 was identified in imaging data from the VST ATLAS survey.

The galaxy has a half-light radius of ~1100 pc, making it the fourth largest satellite of the Milky Way. It has an angular size about double of that of the moon. Despite the large size, Crater 2 has a surprisingly low surface brightness, implying that it is not very massive. In addition, its velocity dispersion is also low, suggesting it may have formed in a halo of low dark matter density. Alternatively, it may be a result of tidal interactions with it and larger galaxies, such as the Milky Way and the Large Magellanic Cloud, but according to some simulations, this would not explain the relatively large size. This unusually low velocity dispersion was predicted using Modified Newtonian Dynamics, an alternative to the dark matter hypothesis. This prediction was later confirmed by observations.

View the full Wikipedia page for Crater 2
↑ Return to Menu

Satellite galaxy in the context of Messier 110

Messier 110, or M110, also known as NGC 205, is a dwarf elliptical galaxy that is a satellite of the Andromeda Galaxy in the Local Group.

View the full Wikipedia page for Messier 110
↑ Return to Menu

Satellite galaxy in the context of Messier 32

Messier 32 (also known as M32 and NGC 221) is a dwarf "early-type" galaxy about 2,490,000 light-years (760,000 pc) from the Solar System, appearing in the constellation Andromeda. M32 is a satellite galaxy of the Andromeda Galaxy (M31) and was discovered by Guillaume Le Gentil in 1749.

The galaxy is a prototype of the relatively rare compact elliptical (cE) class. Half the stars are concentrated within the inner core, which has an effective radius of 330 light-years (100 pc). Densities in the central stellar cusp increase steeply, exceeding 3×10 M pc (30 million solar masses per cubic parsec) at the smallest sub-radii resolved by Hubble Space Telescope, and the half-light radius of this central star cluster is around 6 pc (20 light-years). Like more ordinary elliptical galaxies, M32 contains mostly old faint red and yellow stars with practically no dust or gas and consequently no current star formation. It does, however, show hints of star formation in the relatively recent past.

View the full Wikipedia page for Messier 32
↑ Return to Menu

Satellite galaxy in the context of Interacting galaxies

Interacting galaxies or known as colliding galaxies are two or more galaxies whose gravitational fields result in a disturbance of one another. Major mergers occur between galaxies with similar amounts of mass, whereas minor mergers involve galaxies with masses that vary significantly. An example of a minor interaction is a satellite galaxy disturbing the primary galaxy's spiral arms. An example of a major interaction is a galactic collision, which may lead to a galaxy merger.

View the full Wikipedia page for Interacting galaxies
↑ Return to Menu