SI derived units in the context of Derived unit


SI derived units in the context of Derived unit

SI derived units Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about SI derived units in the context of "Derived unit"


⭐ Core Definition: SI derived units

SI derived units are units of measurement derived from theseven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities.SI coherent derived units involve only a trivial proportionality factor, not requiring conversion factors.

The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m), the SI derived unit of area; and the kilogram per cubic metre (kg/m or kg⋅m), the SI derived unit of density.

↓ Menu
HINT:

In this Dossier

SI derived units in the context of Illuminance

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

In SI units illuminance is measured in lux (lx), or equivalently in lumens per square metre (lm·m). Luminous exitance is measured in lm·m only, not lux. In the CGS system, the unit of illuminance is the phot, which is equal to 10000 lux. The foot-candle is a non-metric unit of illuminance that is used in photography.

View the full Wikipedia page for Illuminance
↑ Return to Menu

SI derived units in the context of Vacuum permeability

The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ0 (pronounced "mu nought" or "mu zero"), approximately equal to 4π × 10 H/m (by the former definition of the ampere). It quantifies the strength of the magnetic field induced by an electric current. Expressed in terms of SI base units, it has the unit kgms⋅A. It can be also expressed in terms of SI derived units, N⋅A, H·m, or T·m·A, which are all equivalent.

Since the revision of the SI in 2019 (when the values of e and h were fixed as defined quantities), μ0 is an experimentally determined constant, its value being proportional to the dimensionless fine-structure constant, which is known to a relative uncertainty of 1.6×10, with no other dependencies with experimental uncertainty. Its value in SI units as recommended by CODATA is:

View the full Wikipedia page for Vacuum permeability
↑ Return to Menu

SI derived units in the context of Magnetic constant

The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ0 (pronounced "mu nought" or "mu zero"), approximately equal to 4π × 10 H/m (by the former definition of the ampere). It quantifies the strength of the magnetic field induced by an electric current. Expressed in terms of SI base units, it has the unit kgms⋅A. It can be also expressed in terms of SI derived units, N⋅A, H·m, or T·m·A, which are all equivalent.

Since the revision of the SI in 2019 (when the values of e and h were fixed as defined quantities), μ0 is an experimentally determined constant with its value proportional to the dimensionless fine-structure constant, which is known to a relative uncertainty of 1.6×10, with no other dependencies with experimental uncertainty. Its value in SI units as recommended by CODATA is:

View the full Wikipedia page for Magnetic constant
↑ Return to Menu