Spatial frequency in the context of "Wavelength"

⭐ In the context of wavelength, spatial frequency is considered…




⭐ Core Definition: Spatial frequency

In mathematics, physics, and engineering, spatial frequency is a characteristic of any structure that is periodic across position in space. The spatial frequency is a measure of how often sinusoidal components (as determined by the Fourier transform) of the structure repeat per unit of distance.

The SI unit of spatial frequency is the reciprocal metre (m), although cycles per meter (c/m) is also common. In image-processing applications, spatial frequency is often expressed in units of cycles per millimeter (c/mm) or also line pairs per millimeter (LP/mm).

↓ Menu

👉 Spatial frequency in the context of Wavelength

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal. The term wavelength may also apply to the repeating envelope of modulated waves or waves formed by interference of several sinusoids.

Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to the frequency of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.

↓ Explore More Topics
In this Dossier

Spatial frequency in the context of Wavenumber

In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length, expressed in SI units of cycles per metre or reciprocal metre (m). Angular wavenumber, defined as the wave phase divided by time, is a quantity with dimension of angle per length and SI units of radians per metre. They are analogous to temporal frequency, respectively the ordinary frequency, defined as the number of wave cycles divided by time (in cycles per second or reciprocal seconds), and the angular frequency, defined as the phase angle divided by time (in radians per second).

In multidimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space. Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics. For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum.

↑ Return to Menu

Spatial frequency in the context of Modulation transfer function

The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector is a scale-dependent description of their imaging contrast. Its magnitude is the image contrast of the harmonic intensity pattern, , as a function of the spatial frequency, , while its complex argument indicates a phase shift in the periodic pattern. The optical transfer function is used by optical engineers to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen, or simply the next item in the optical transmission chain.

Formally, the optical transfer function is defined as the Fourier transform of the point spread function (PSF, that is, the impulse response of the optics, the image of a point source). As a Fourier transform, the OTF is generally complex-valued; however, it is real-valued in the common case of a PSF that is symmetric about its center. In practice, the imaging contrast, as given by the magnitude or modulus of the optical-transfer function, is of primary importance. This derived function is commonly referred to as the modulation transfer function (MTF).

↑ Return to Menu