The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector is a scale-dependent description of their imaging contrast. Its magnitude is the image contrast of the harmonic intensity pattern,
, as a function of the spatial frequency,
, while its complex argument indicates a phase shift in the periodic pattern. The optical transfer function is used by optical engineers to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen, or simply the next item in the optical transmission chain.
Formally, the optical transfer function is defined as the Fourier transform of the point spread function (PSF, that is, the impulse response of the optics, the image of a point source). As a Fourier transform, the OTF is generally complex-valued; however, it is real-valued in the common case of a PSF that is symmetric about its center. In practice, the imaging contrast, as given by the magnitude or modulus of the optical-transfer function, is of primary importance. This derived function is commonly referred to as the modulation transfer function (MTF).