Rigid body in the context of Propulsion system


Rigid body in the context of Propulsion system

Rigid body Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Rigid body in the context of "Propulsion system"


⭐ Core Definition: Rigid body

In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible, when a deforming pressure or deforming force is applied on it. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. Mechanics of rigid bodies is a field within mechanics where motions and forces of objects are studied without considering effects that can cause deformation (as opposed to mechanics of materials, where deformable objects are considered).

In the study of special relativity, a perfectly rigid body does not exist; and objects can only be assumed to be rigid if they are not moving near the speed of light, where the mass is infinitely large. In quantum mechanics, a rigid body is usually thought of as a collection of point masses. For instance, molecules (consisting of the point masses: electrons and nuclei) are often seen as rigid bodies (see classification of molecules as rigid rotors).

↓ Menu
HINT:

In this Dossier

Rigid body in the context of Center of mass

In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. For a rigid body containing its center of mass, this is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for the application of Newton's laws of motion.

In the case of a single rigid body, the center of mass is fixed in relation to the body, and if the body has uniform density, it will be located at the centroid. The center of mass may be located outside the physical body, as is sometimes the case for hollow or open-shaped objects, such as a horseshoe. In the case of a distribution of separate bodies, such as the planets of the Solar System, the center of mass may not correspond to the position of any individual member of the system.

View the full Wikipedia page for Center of mass
↑ Return to Menu

Rigid body in the context of Deformation (engineering)

In engineering, deformation (the change in size or shape of an object) may be elastic or plastic.If the deformation is negligible, the object is said to be rigid.

View the full Wikipedia page for Deformation (engineering)
↑ Return to Menu

Rigid body in the context of Propulsion

Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body (or an articulated rigid body) but may also concern a fluid. The term is derived from two Latin words: pro, meaning before or forward; and pellere, meaning to drive. A propulsion system consists of a source of mechanical power, and a propulsor (means of converting this power into propulsive force).

Plucking a guitar string to induce a vibratory translation is technically a form of propulsion of the guitar string; this is not commonly depicted in this vocabulary, even though human muscles are considered to propel the fingertips. The motion of an object moving through a gravitational field is affected by the field, and within some frames of reference physicists speak of the gravitational field generating a force upon the object, but for deep theoretic reasons, physicists now consider the curved path of an object moving freely through space-time as shaped by gravity as a natural movement of the object, unaffected by a propulsive force (in this view, the falling apple is considered to be unpropelled, while the observer of the apple standing on the ground is considered to be propelled by the reactive force of the Earth's surface).

View the full Wikipedia page for Propulsion
↑ Return to Menu

Rigid body in the context of Angular acceleration

In physics, angular acceleration (symbol α, alpha) is the time rate of change of angular velocity. Following the two types of angular velocity, spin angular velocity and orbital angular velocity, the respective types of angular acceleration are: spin angular acceleration, involving a rigid body about an axis of rotation intersecting the body's centroid; and orbital angular acceleration, involving a point particle and an external axis.

Angular acceleration has physical dimensions of angle per time squared, with the SI unit radian per second squared (rad⋅s). In two dimensions, angular acceleration is a pseudoscalar whose sign is taken to be positive if the angular speed increases counterclockwise or decreases clockwise, and is taken to be negative if the angular speed increases clockwise or decreases counterclockwise. In three dimensions, angular acceleration is a pseudovector.

View the full Wikipedia page for Angular acceleration
↑ Return to Menu

Rigid body in the context of Elongation (materials science)

A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc.

View the full Wikipedia page for Elongation (materials science)
↑ Return to Menu

Rigid body in the context of Orientation (geometry)

In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies.More specifically, it refers to the imaginary rotation that is needed to move the object from a reference placement to its current placement. A rotation may not be enough to reach the current placement, in which case it may be necessary to add an imaginary translation to change the object's position (or linear position). The position and orientation together fully describe how the object is placed in space. The above-mentioned imaginary rotation and translation may be thought to occur in any order, as the orientation of an object does not change when it translates, and its position does not change when it rotates.

Euler's rotation theorem shows that in three dimensions any orientation can be reached with a single rotation around a fixed axis. This gives one common way of representing the orientation using an axis–angle representation. Other widely used methods include rotation quaternions, rotors, Euler angles, or rotation matrices. More specialist uses include Miller indices in crystallography, strike and dip in geology and grade on maps and signs.A unit vector may also be used to represent an object's normal vector direction or the relative direction between two points.

View the full Wikipedia page for Orientation (geometry)
↑ Return to Menu

Rigid body in the context of Rotation (mathematics)

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

Mathematically, a rotation is a map. All rotations about a fixed point form a group under composition called the rotation group (of a particular space). But in mechanics and, more generally, in physics, this concept is frequently understood as a coordinate transformation (importantly, a transformation of an orthonormal basis), because for any motion of a body there is an inverse transformation which if applied to the frame of reference results in the body being at the same coordinates. For example, in two dimensions rotating a body clockwise about a point keeping the axes fixed is equivalent to rotating the axes counterclockwise about the same point while the body is kept fixed. These two types of rotation are called active and passive transformations.

View the full Wikipedia page for Rotation (mathematics)
↑ Return to Menu

Rigid body in the context of Structural rigidity

In discrete geometry and mechanics, structural rigidity is a combinatorial theory for predicting the flexibility of ensembles formed by rigid bodies connected by flexible linkages or hinges.

View the full Wikipedia page for Structural rigidity
↑ Return to Menu

Rigid body in the context of Shear force

In solid mechanics, shearing forces are unaligned forces acting on one part of a body in a specific direction, and another part of the body in the opposite direction. When the forces are collinear (aligned with each other), they are called tension forces or compression forces. Shear force can also be defined in terms of planes: "If a plane is passed through a body, a force acting along this plane is called a shear force or shearing force."

View the full Wikipedia page for Shear force
↑ Return to Menu

Rigid body in the context of Six degrees of freedom

Six degrees of freedom (6DOF), or sometimes six degrees of movement, refers to the six mechanical degrees of freedom of movement of a rigid body in three-dimensional space. Specifically, the body is free to change position as forward/backward (surge), up/down (heave), left/right (sway) translation in three perpendicular axes, combined with changes in orientation through rotation about three perpendicular axes, often termed yaw (normal axis), pitch (transverse axis), and roll (longitudinal axis).

Three degrees of freedom (3DOF), a term often used in the context of virtual reality, typically refers to tracking of rotational motion only: pitch, yaw, and roll.

View the full Wikipedia page for Six degrees of freedom
↑ Return to Menu

Rigid body in the context of Uniform circular motion

In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

Examples of circular motion include: special satellite orbits around the Earth (circular orbits), a ceiling fan's blades rotating around a hub, a stone that is tied to a rope and is being swung in circles, a car turning through a curve in a race track, an electron moving perpendicular to a uniform magnetic field, and a gear turning inside a mechanism.

View the full Wikipedia page for Uniform circular motion
↑ Return to Menu

Rigid body in the context of Isometry

In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

View the full Wikipedia page for Isometry
↑ Return to Menu