Richard Taylor (mathematician) in the context of Robert Langlands


Richard Taylor (mathematician) in the context of Robert Langlands

⭐ Core Definition: Richard Taylor (mathematician)

Richard Lawrence Taylor (born 19 May 1962) is a British-American mathematician specialising in number theory. He is currently the Barbara Kimball Browning Professor in Humanities and Sciences at Stanford University in California.

Taylor received the 2002 Cole Prize, the 2007 Shaw Prize with Robert Langlands, and the 2015 Breakthrough Prize in Mathematics.

↓ Menu
HINT:

In this Dossier

Richard Taylor (mathematician) in the context of Wiles's proof of Fermat's Last Theorem

Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous knowledge by almost all mathematicians at the time.

Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of [his] working life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995 in the journal Annals of Mathematics in the form of two articles, one authored by Wiles and the other co-authored by Wiles and Richard Taylor. Together, the two papers are 129 pages long and consumed more than seven years of Wiles's research time.

View the full Wikipedia page for Wiles's proof of Fermat's Last Theorem
↑ Return to Menu

Richard Taylor (mathematician) in the context of Andrew Wiles

Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory. He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Knight Commander of the Order of the British Empire in 2000. In 2018, Wiles was appointed the first Regius Professor of Mathematics at Oxford. Wiles is also a 1997 MacArthur Fellow.

Wiles was born in Cambridge to theologian Maurice Frank Wiles and Patricia Wiles. While spending much of his childhood in Nigeria, Wiles developed an interest in mathematics and in Fermat's Last Theorem in particular. After moving to Oxford and graduating from there in 1974, he worked on unifying Galois representations, elliptic curves and modular forms, starting with Barry Mazur's generalizations of Iwasawa theory. In the early 1980s, Wiles spent a few years at the University of Cambridge before moving to Princeton University, where he worked on expanding out and applying Hilbert modular forms. In 1986, upon reading Ken Ribet's seminal work on Fermat's Last Theorem, Wiles set out to prove the modularity theorem for semistable elliptic curves, which implied Fermat's Last Theorem. By 1993, he had been able to convince a knowledgeable colleague that he had a proof of Fermat's Last Theorem, though a flaw was subsequently discovered. After an insight on 19 September 1994, Wiles and his student Richard Taylor were able to circumvent the flaw, and published the results in 1995, to widespread acclaim.

View the full Wikipedia page for Andrew Wiles
↑ Return to Menu

Richard Taylor (mathematician) in the context of Modularity theorem

In number theory, the modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem (FLT). Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001. Before that, the statement was known as the Taniyama–Shimura conjecture, Taniyama–Shimura–Weil conjecture, or the modularity conjecture for elliptic curves.

View the full Wikipedia page for Modularity theorem
↑ Return to Menu

Richard Taylor (mathematician) in the context of Brian Conrad

Brian Conrad (born November 20, 1970) is an American mathematician and number theorist, working at Stanford University. Previously, he taught at the University of Michigan and at Columbia University.

Conrad and others proved the modularity theorem, also known as the Taniyama-Shimura Conjecture. He proved this in 1999 with Christophe Breuil, Fred Diamond and Richard Taylor, while holding a joint postdoctoral position at Harvard University and the Institute for Advanced Study in Princeton, New Jersey.

View the full Wikipedia page for Brian Conrad
↑ Return to Menu