Resonator in the context of "Quartz clock"

Play Trivia Questions online!

or

Skip to study material about Resonator in the context of "Quartz clock"

Ad spacer

⭐ Core Definition: Resonator

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

A cavity resonator is one in which waves exist in a hollow space inside the device. In electronics and radio, microwave cavities consisting of hollow metal boxes are used in microwave transmitters, receivers and test equipment to control frequency, in place of the tuned circuits which are used at lower frequencies. Acoustic cavity resonators, in which sound is produced by air vibrating in a cavity with one opening, are known as Helmholtz resonators.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Resonator in the context of Acoustic lens

Acoustic metamaterials, sometimes referred to as sonic or phononic crystals, are architected materials designed to manipulate sound waves or phonons in gases, liquids, and solids. By tailoring effective parameters such as bulk modulus (β), density (ρ), and in some cases chirality, they can be engineered to transmit, trap, or attenuate waves at selected frequencies, functioning as acoustic resonators when local resonances dominate. Within the broader field of mechanical metamaterials, acoustic metamaterials represent the dynamic branch where wave control is the primary goal. They have been applied to model large-scale phenomena such as seismic waves and earthquake mitigation, as well as small-scale phenomena such as phonon behavior in crystals through band-gap engineering. This band-gap behavior mirrors the electronic band gaps in solids, enabling analogies between acoustic and quantum systems and supporting research in optomechanics and quantum technologies. In mechanics, acoustic metamaterials are particularly relevant for designing structures that mitigate vibrations, shield against blasts, or manipulate wave propagation in civil and aerospace systems.

↑ Return to Menu

Resonator in the context of Bell

A bell /ˈbɛl/ () is a directly struck idiophone percussion instrument. Most bells have the shape of a hollow cup that when struck vibrates in a single strong strike tone, with its sides forming an efficient resonator. The strike may be made by an internal "clapper" or "uvula", an external hammer, or—in small bells—by a small loose sphere enclosed within the body of the bell (jingle bell).

Bells are usually cast from bell metal (a type of bronze) for its resonant properties, but can also be made from other hard materials. This depends on the function. Some small bells such as ornamental bells or cowbells can be made from cast or pressed metal, glass or ceramic, but large bells such as a church, clock and tower bells are normally cast from bell metal.

↑ Return to Menu

Resonator in the context of Organ pipe

An organ pipe is a sound-producing element of the pipe organ that resonates at a specific pitch when pressurized air (commonly referred to as wind) is driven through it. Each pipe is tuned to a note of the musical scale. A set of organ pipes of similar timbre comprising the complete scale is known as a rank; one or more ranks constitutes a stop.

↑ Return to Menu

Resonator in the context of Linear particle accelerator

A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University.Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles (electrons and positrons) for particle physics.

The design of a linac depends on the type of particle that is being accelerated: electrons, protons or ions. Linacs range in size from a cathode-ray tube (which is a type of linac) to the 3.2-kilometre-long (2.0 mi) linac at the SLAC National Accelerator Laboratory in Menlo Park, California.

↑ Return to Menu

Resonator in the context of Wind instrument

A wind instrument is a musical instrument that contains some type of resonator (usually a tube) in which a column of air is set into vibration by the player blowing into (or over) a mouthpiece set at or near the end of the resonator. The pitch of the vibration is determined by the length of the tube and by manual modifications of the effective length of the vibrating column of air. In the case of some wind instruments, sound is produced by blowing through a reed; others require buzzing into a metal mouthpiece, while yet others require the player to blow into a hole at an edge, which splits the air column and creates the sound.

↑ Return to Menu

Resonator in the context of Brass instrument

A brass instrument is a musical instrument that produces sound by sympathetic vibration of air in a tubular resonator in sympathy with the vibration of the player's lips. The term labrosone, from Latin elements meaning "lip" and "sound", is also used for the group, since instruments employing this "lip reed" method of sound production can be made from other materials like wood or animal horn, particularly early or traditional instruments such as the cornett, alphorn or shofar.

There are several factors involved in producing different pitches on a brass instrument. Slides, valves, crooks (though they are rarely used today), or keys are used to change vibratory length of tubing, thus changing the available harmonic series, while the player's embouchure, lip tension and air flow serve to select the specific harmonic produced from the available series.

↑ Return to Menu

Resonator in the context of Celesta

The celesta (/sɪˈlɛstə/) or celeste (/sɪˈlɛst/), also called a bell-piano, is a struck idiophone operated by a keyboard. It looks similar to an upright piano (four- or five-octave), albeit with smaller keys and a much smaller cabinet, or a large wooden music box (three-octave). The keys connect to hammers that strike a graduated set of metal (usually steel) plates or bars suspended over wooden resonators. Four- or five-octave models usually have a damper pedal that sustains or damps the sound. The three-octave instruments do not have a pedal because of their small "table-top" design. One of the best-known works that uses the celesta is Pyotr Ilyich Tchaikovsky's "Dance of the Sugar Plum Fairy" from The Nutcracker.

The sound of the celesta is similar to that of the glockenspiel, but with a much softer and more subtle timbre. This quality gave the instrument its name, celeste, meaning "heavenly" in French. The celesta is often used to enhance a melody line played by another instrument or section. Its musical parts are often the duplicate of a theme played on flute, harp or piano; sometimes even a real solo part. It is also used in chamber music, but there are very few concertos written for it. The delicate, bell-like sound is not loud enough to be used in full ensemble sections.

↑ Return to Menu

Resonator in the context of Tuning fork

A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal (usually steel). It resonates at a specific constant pitch when set vibrating by striking it against a surface or with an object, and emits a pure musical tone once the high overtones fade out. A tuning fork's pitch depends on the length and mass of the two prongs. They are traditional sources of standard pitch for tuning musical instruments.

The tuning fork was invented in 1711 by British musician John Shore, sergeant trumpeter and lutenist to the royal court.

↑ Return to Menu