Renin in the context of "Angiotensin I"

Play Trivia Questions online!

or

Skip to study material about Renin in the context of "Angiotensin I"

Ad spacer

⭐ Core Definition: Renin

Renin (etymology and pronunciation), also known as an angiotensinogenase, is an aspartic protease protein and enzyme secreted by the kidneys that participates in the body's renin-angiotensin-aldosterone system (RAAS)—also known as the renin-angiotensin-aldosterone axis—that increases the volume of extracellular fluid (blood plasma, lymph, and interstitial fluid) and causes arterial vasoconstriction. Thus, it increases the body's mean arterial blood pressure.

Renin is not commonly referred to as a hormone, although it has a receptor, the (pro)renin receptor, also known as the renin receptor and prorenin receptor (see also below), as well as enzymatic activity with which it hydrolyzes angiotensinogen to angiotensin I.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Renin in the context of Renin–angiotensin system

The renin–angiotensin system (RAS), or renin–angiotensin–aldosterone system (RAAS), is a hormone system that regulates blood pressure, fluid, and electrolyte balance, and systemic vascular resistance.

When renal blood flow is reduced, juxtaglomerular cells in the kidneys convert the precursor prorenin (already present in the blood) into renin and secrete it directly into the circulation. Plasma renin then carries out the conversion of angiotensinogen, released by the liver, to angiotensin I, which has no biological function on its own. Angiotensin I is subsequently converted to the active angiotensin II by the angiotensin-converting enzyme (ACE) found on the surface of vascular endothelial cells, predominantly those of the lungs. Angiotensin II has a short life of about 1 to 2 minutes. Then, it is rapidly degraded into angiotensin III by angiotensinases which are present in red blood cells and vascular beds in many tissues.

↑ Return to Menu

Renin in the context of Kidney (vertebrates)

The kidneys are a pair of organs of the excretory system in vertebrates, which maintain the balance of water and electrolytes in the body (osmoregulation), filter the blood, remove metabolic waste products, and, in many vertebrates, also produce hormones (in particular, renin) and maintain blood pressure. In healthy vertebrates, the kidneys maintain homeostasis of extracellular fluid in the body. When the blood is being filtered, the kidneys form urine, which consists of water and excess or unnecessary substances, the urine is then excreted from the body through other organs, which in vertebrates, depending on the species, may include the ureter, urinary bladder, cloaca, and urethra.

All vertebrates have kidneys. The kidneys are the main organ that allows species to adapt to different environments, including fresh and salt water, terrestrial life and desert climate. Depending on the environment in which animals have evolved, the functions and structure of the kidneys may differ. Also, between classes of animals, the kidneys differ in shape and anatomical location. In mammals, they are usually bean-shaped. Evolutionarily, the kidneys first appeared in fish as a result of the independent evolution of the renal glomeruli and tubules, which eventually united into a single functional unit. In some invertebrates, the nephridia are analogous to the kidneys but nephridia are not kidneys. The metanephridia, together with the vascular filtration site and coelom, are functionally identical to the ancestral primitive kidneys of vertebrates.

↑ Return to Menu

Renin in the context of Kidney

In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres (4+12 inches) in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder.

The kidney participates in the control of the volume of various body fluids, fluid osmolality, acid–base balance, various electrolyte concentrations, and removal of toxins. Filtration occurs in the glomerulus: one-fifth of the blood volume that enters the kidneys is filtered. Examples of substances reabsorbed are solute-free water, sodium, bicarbonate, glucose, and amino acids. Examples of substances secreted are hydrogen, ammonium, potassium and uric acid. The nephron is the structural and functional unit of the kidney. Each adult human kidney contains around 1 million nephrons, while a mouse kidney contains only about 12,500 nephrons. The kidneys also carry out functions independent of the nephrons. For example, they convert a precursor of vitamin D to its active form, calcitriol; and synthesize the hormones erythropoietin and renin.

↑ Return to Menu

Renin in the context of Juxtaglomerular cell

Juxtaglomerular cells (JG cells), also known as juxtaglomerular granular cells are cells in the kidney that synthesize, store, and secrete the enzyme renin. They are specialized smooth muscle cells in the tunica media of the walls of the afferent arterioles and - to a lesser extent - efferent arterioles of the glomerulus. They are located near the glomerulus, hence the name. In synthesizing renin, they play a critical role in the renin–angiotensin system and thus in autoregulation of the kidney.

Juxtaglomerular cells secrete renin in response to a drop in pressure detected by stretch receptors in the vascular walls, or when stimulated by macula densa cells. Macula densa cells are located in the distal convoluted tubule, and stimulate juxtaglomerular cells to release renin when they detect a drop in chloride concentration in tubular fluid. Together, juxtaglomerular cells, extraglomerular mesangial cells and macula densa cells comprise the juxtaglomerular apparatus.

↑ Return to Menu

Renin in the context of Prorenin

Prorenin (/prəˈrnɪn/) is a protein that constitutes a precursor for renin, the hormone that activates the renin–angiotensin system, which serves to raise blood pressure. Prorenin is converted into renin by the juxtaglomerular cells, which are specialised smooth muscle cells present mainly in the afferent, but also the efferent, arterioles of the glomerular capillary bed.

Prorenin is a relatively large molecule, weighing approximately 46 KDa.

↑ Return to Menu

Renin in the context of Zona glomerulosa

The zona glomerulosa (sometimes, glomerular zone) of the adrenal gland is the most superficial layer of the adrenal cortex, lying directly beneath the renal capsule. Its cells are ovoid and arranged in clusters or arches (glomus is Latin for "ball").

In response to increased potassium levels, renin or decreased blood flow to the kidneys, cells of the zona glomerulosa produce and secrete the mineralocorticoid aldosterone into the blood as part of the renin–angiotensin system. Although sustained production of aldosterone requires persistent calcium entry through low-voltage activated Ca channels, isolated zona glomerulosa cells are considered nonexcitable, with recorded membrane voltages that are too hyperpolarized to permit Ca channels entry. However, mouse zona glomerulosa cells within adrenal slices spontaneously generate membrane potential oscillations of low periodicity; this innate electrical excitability of these cells provides a platform for the production of a recurrent Ca channels signal that can be controlled by angiotensin II and extracellular potassium, the 2 major regulators of aldosterone production. Aldosterone regulates the body's concentration of electrolytes, primarily sodium and potassium, by acting on the distal convoluted tubule of kidney nephrons to: increase sodium reabsorption, increase potassium excretion, increase water reabsorption through osmosis.

↑ Return to Menu