Remainder in the context of Remainder term


Remainder in the context of Remainder term

Remainder Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Remainder in the context of "Remainder term"


⭐ Core Definition: Remainder

In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient (integer division). In algebra of polynomials, the remainder is the polynomial "left over" after dividing one polynomial by another. The modulo operation is the operation that produces such a remainder when given a dividend and divisor.

Alternatively, a remainder is also what is left after subtracting one number from another, although this is more precisely called the difference. This usage can be found in some elementary textbooks; colloquially it is replaced by the expression "the rest" as in "Give me two dollars back and keep the rest." However, the term "remainder" is still used in this sense when a function is approximated by a series expansion, where the error expression ("the rest") is referred to as the remainder term.

↓ Menu
HINT:

In this Dossier

Remainder in the context of Euclidean algorithm

In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).It is an example of an algorithm, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.

The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since this replacement reduces the larger of the two numbers, repeating this process gives successively smaller pairs of numbers until the two numbers become equal. When that occurs, that number is the GCD of the original two numbers. By reversing the steps or using the extended Euclidean algorithm, the GCD can be expressed as a linear combination of the two original numbers, that is the sum of the two numbers, each multiplied by an integer (for example, 21 = 5 × 105 + (−2) × 252). The fact that the GCD can always be expressed in this way is known as Bézout's identity.

View the full Wikipedia page for Euclidean algorithm
↑ Return to Menu

Remainder in the context of Largest remainders method

The quota or divide-and-rank methods make up a category of apportionment rules, i.e. algorithms for allocating seats in a legislative body among multiple groups (e.g. parties or federal states). The quota methods begin by calculating an entitlement (basic number of seats) for each party, by dividing their vote totals by an electoral quota (a fixed number of votes needed to win a seat, as a unit). Then, leftover seats, if any are allocated by rounding up the apportionment for some parties. These rules are typically contrasted with the more popular highest averages methods (also called divisor methods).

By far the most common quota method are the largest remainders or quota-shift methods, which assign any leftover seats to the "plurality" winners (the parties with the largest remainders, i.e. most leftover votes).

View the full Wikipedia page for Largest remainders method
↑ Return to Menu

Remainder in the context of Euclidean division

In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder exist and are unique, under some conditions. Because of this uniqueness, Euclidean division is often considered without referring to any method of computation, and without explicitly computing the quotient and the remainder. The methods of computation are called integer division algorithms, the best known of which being long division.

Euclidean division, and algorithms to compute it, are fundamental for many questions concerning integers, such as the Euclidean algorithm for finding the greatest common divisor of two integers, and modular arithmetic, for which only remainders are considered. The operation consisting of computing only the remainder is called the modulo operation, and is used often in both mathematics and computer science.

View the full Wikipedia page for Euclidean division
↑ Return to Menu

Remainder in the context of Modulo operation

In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the modulus of the operation.

Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

View the full Wikipedia page for Modulo operation
↑ Return to Menu

Remainder in the context of Residual-current device

A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device, more specifically a form of Earth-leakage circuit breaker, that interrupts an electrical circuit when the current passing through line and neutral conductors of a circuit is not equal (the term residual relating to the imbalance), therefore indicating current leaking to ground, or to an unintended path that bypasses the protective device. The device's purpose is to reduce the severity of injury caused by an electric shock. This type of circuit interrupter cannot protect a person who touches both circuit conductors at the same time, since it then cannot distinguish normal current from that passing through a person.

A residual-current circuit breaker with integrated overcurrent protection (RCBO) combines RCD protection with additional overcurrent protection into the same device.

View the full Wikipedia page for Residual-current device
↑ Return to Menu