Regret (decision theory) in the context of "Regret"

Play Trivia Questions online!

or

Skip to study material about Regret (decision theory) in the context of "Regret"

Ad spacer

⭐ Core Definition: Regret (decision theory)

In decision theory, regret aversion (or anticipated regret) describes how the human emotional response of regret can influence decision-making under uncertainty. When individuals make choices without complete information, they often experience regret if they later discover that a different choice would have produced a better outcome. This regret can be quantified as the difference in value between the actual decision made and what would have been the optimal decision in hindsight.

Unlike traditional models that consider regret as merely a post-decision emotional response, the theory of regret aversion proposes that decision-makers actively anticipate potential future regret and incorporate this anticipation into their current decision-making process. This anticipation can lead individuals to make choices specifically designed to minimize the possibility of experiencing regret later, even if those choices are not optimal from a purely probabilistic expected-value perspective.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Regret (decision theory) in the context of Objective function

In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite (in specific domains, variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy.

In statistics, typically a loss function is used for parameter estimation, and the event in question is some function of the difference between estimated and true values for an instance of data. The concept, as old as Laplace, was reintroduced in statistics by Abraham Wald in the middle of the 20th century. In the context of economics, for example, this is usually economic cost or regret. In classification, it is the penalty for an incorrect classification of an example. In actuarial science, it is used in an insurance context to model benefits paid over premiums, particularly since the works of Harald Cramér in the 1920s. In optimal control, the loss is the penalty for failing to achieve a desired value. In financial risk management, the function is mapped to a monetary loss.

↑ Return to Menu

Regret (decision theory) in the context of Optimal decision

An optimal decision is a decision that leads to at least as good a known or expected outcome as all other available decision options. It is an important concept in decision theory. In order to compare the different decision outcomes, one commonly assigns a utility value to each of them.

If there is uncertainty as to what the outcome will be but one has knowledge about the distribution of the uncertainty, then under the von Neumann–Morgenstern axioms the optimal decision maximizes the expected utility (a probability–weighted average of utility over all possible outcomes of a decision). Sometimes, the equivalent problem of minimizing the expected value of loss is considered, where loss is (–1) times utility. Another equivalent problem is minimizing expected regret.

↑ Return to Menu