Reflection symmetry in the context of "Asymmetry"

Play Trivia Questions online!

or

Skip to study material about Reflection symmetry in the context of "Asymmetry"

Ad spacer

⭐ Core Definition: Reflection symmetry

In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.

In two-dimensional space, there is a line/axis of symmetry, in three-dimensional space, there is a plane of symmetry. An object or figure which is indistinguishable from its transformed image is called mirror symmetric.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Reflection symmetry in the context of Parabola

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from the directrix and the focus. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane parallel to another plane that is tangential to the conical surface.

↑ Return to Menu

Reflection symmetry in the context of Hyperboloid of revolution

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

A hyperboloid is a quadric surface, that is, a surface defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, a hyperboloid is characterized by not being a cone or a cylinder, having a center of symmetry, and intersecting many planes into hyperbolas. A hyperboloid has three pairwise perpendicular axes of symmetry, and three pairwise perpendicular planes of symmetry.

↑ Return to Menu

Reflection symmetry in the context of Pattern

A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable and logical manner. There exists countless kinds of unclassified patterns, present in everyday nature, fashion, many artistic areas, as well as a connection with mathematics. A geometric pattern is a type of pattern formed of repeating geometric shapes and typically repeated like a wallpaper design.

Any of the senses may directly observe patterns. Conversely, abstract patterns in science, mathematics, or language may be observable only by analysis. Direct observation in practice means seeing visual patterns, which are widespread in nature and in art. Visual patterns in nature are often chaotic, rarely exactly repeating, and often involve fractals. Natural patterns include spirals, meanders, waves, foams, tilings, cracks, and those created by symmetries of rotation and reflection. Patterns have an underlying mathematical structure; indeed, mathematics can be seen as the search for regularities, and the output of any function is a mathematical pattern. Similarly in the sciences, theories explain and predict regularities in the world.

↑ Return to Menu

Reflection symmetry in the context of Axial symmetry

Axial symmetry is symmetry around an axis or line (geometry). An object is said to be axially symmetric if its appearance is unchanged if transformed around an axis. The main types of axial symmetry are reflection symmetry and rotational symmetry (including circular symmetry for plane figures and cylindrical symmetry for surfaces of revolution). For example, a baseball bat (without trademark or other design), or a plain white tea saucer, looks the same if it is rotated by any angle about the line passing lengthwise through its center, so it is axially symmetric.

Axial symmetry can also be discrete with a fixed angle of rotation, 360°/n for n-fold symmetry.

↑ Return to Menu

Reflection symmetry in the context of Semicircle

In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, π radians, or a half-turn). It only has one line of symmetry (reflection symmetry).

In non-technical usage, the term "semicircle" is sometimes used to refer to either a closed curve that also includes the diameter segment from one end of the arc to the other or to the half-disk, which is a two-dimensional geometric region that further includes all the interior points.

↑ Return to Menu

Reflection symmetry in the context of Gyration

In geometry, a gyration is a rotation in a discrete subgroup of symmetries of the Euclidean plane such that the subgroup does not also contain a reflection symmetry whose axis passes through the center of rotational symmetry. In the orbifold corresponding to the subgroup, a gyration corresponds to a rotation point that does not lie on a mirror, called a gyration point.

For example, having a sphere rotating about any point that is not the center of the sphere, the sphere is gyrating. If it was rotating about its center, the rotation would be symmetrical and it would not be considered gyration.

↑ Return to Menu