Reference plane in the context of Orbital elements


Reference plane in the context of Orbital elements

Reference plane Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Reference plane in the context of "Orbital elements"


⭐ Core Definition: Reference plane

In celestial mechanics, the orbital plane of reference (or orbital reference plane) is the plane used to define orbital elements (positions). The two main orbital elements that are measured with respect to the plane of reference are the inclination and the longitude of the ascending node.

Depending on the type of body being described, there are four different kinds of reference planes that are typically used:

↓ Menu
HINT:

In this Dossier

Reference plane in the context of Orbital plane (astronomy)

The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) and of an orbiting celestial body at two different times/points of its orbit.

The orbital plane is defined in relation to a reference plane by two parameters: inclination (i) and longitude of the ascending node (Ω).

View the full Wikipedia page for Orbital plane (astronomy)
↑ Return to Menu

Reference plane in the context of Azimuth

An azimuth (/ˈæzəməθ/ ; from Arabic: اَلسُّمُوت, romanizedas-sumūt, lit.'the directions') is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system.

Mathematically, the relative position vector from an observer (origin) to a point of interest is projected perpendicularly onto a reference plane (the horizontal plane); the angle between the projected vector and a reference vector on the reference plane is called the azimuth.

View the full Wikipedia page for Azimuth
↑ Return to Menu

Reference plane in the context of Epoch (astronomy)

In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit.

The main use of astronomical quantities specified in this way is to calculate other relevant parameters of motion, in order to predict future positions and velocities. The applied tools of the disciplines of celestial mechanics or its subfield orbital mechanics (for predicting orbital paths and positions for bodies in motion under the gravitational effects of other bodies) can be used to generate an ephemeris, a table of values giving the positions and velocities of astronomical objects in the sky at a given time or times.

View the full Wikipedia page for Epoch (astronomy)
↑ Return to Menu

Reference plane in the context of Longitude of the ascending node

The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space. Denoted with the symbol Ω, it is the angle from a specified reference direction, called the origin of longitude, to the direction of the ascending node (☊), as measured in a specified reference plane. The ascending node is the point where the orbit of the object passes through the plane of reference, as seen in the adjacent image.

View the full Wikipedia page for Longitude of the ascending node
↑ Return to Menu