Receiver (radio) in the context of Radio frequency


Receiver (radio) in the context of Radio frequency

Receiver (radio) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Receiver (radio) in the context of "Radio frequency"


⭐ Core Definition: Receiver (radio)

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves (electromagnetic waves of radio frequency) and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

Radio receivers are essential components of all systems based on radio technology. The information produced by the receiver may be in the form of sound, video (television), or digital data. A radio receiver may be a separate piece of electronic equipment, or an electronic circuit within another device. The most familiar type of radio receiver for most people is a broadcast radio receiver, which reproduces sound transmitted by radio broadcasting stations, historically the first mass-market radio application. A broadcast receiver is commonly called a "radio". However radio receivers are very widely used in other areas of modern technology, in televisions, cell phones, wireless modems, radio clocks and other components of communications, remote control, and wireless networking systems.

↓ Menu
HINT:

In this Dossier

Receiver (radio) in the context of Receiver (information theory)

The receiver in information theory is the receiving end of a communication channel. It receives decoded messages/information from the sender, who first encoded them. Sometimes the receiver is modeled so as to include the decoder. Real-world receivers like radio receivers or telephones can not be expected to receive as much information as predicted by the noisy channel coding theorem.

View the full Wikipedia page for Receiver (information theory)
↑ Return to Menu

Receiver (radio) in the context of Radiogram (device)

In British English, a radiogram is a piece of furniture that combined a radio and record player. The word radiogram is a portmanteau of radio and gramophone. The corresponding term in American English is console.

View the full Wikipedia page for Radiogram (device)
↑ Return to Menu

Receiver (radio) in the context of Broadcast range

A broadcast range (also listening range or listening area for radio, or viewing range or viewing area for television) is the service area that a broadcast station or other transmission covers via radio waves (or possibly infrared light, which is closely related). It is generally the area in which a station's signal strength is sufficient for most receivers to decode it. However, this also depends on interference from other stations.

View the full Wikipedia page for Broadcast range
↑ Return to Menu

Receiver (radio) in the context of Radio antennas

In radio-frequency engineering, an antenna (American English) or aerial (British English) is an electronic device that converts an alternating electric current into radio waves (transmitting), or radio waves into an electric current (receiving). It is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

An antenna is an array of conductor segments (elements), electrically connected to the receiver or transmitter. Antennas can be designed to transmit and receive radio waves in all horizontal directions equally (omnidirectional antennas), or preferentially in a particular direction (directional, or high-gain, or "beam" antennas). An antenna may include components not connected to the transmitter, parabolic reflectors, horns, or parasitic elements, which serve to direct the radio waves into a beam or other desired radiation pattern. Strong directivity and good efficiency when transmitting are hard to achieve with antennas with dimensions that are much smaller than a half wavelength.

View the full Wikipedia page for Radio antennas
↑ Return to Menu

Receiver (radio) in the context of Electronic component

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

Electronic components have a number of electrical terminals or leads. These leads connect to other electrical components, often over wire, to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

View the full Wikipedia page for Electronic component
↑ Return to Menu

Receiver (radio) in the context of Amateur television

Amateur television (ATV) is the transmission of broadcast quality video and audio over the wide range of frequencies of radio waves allocated for radio amateur (ham) use. ATV is used for non-commercial experimentation, pleasure, and public service events. Ham TV stations were on the air in many cities before commercial television stations came on the air. Various transmission standards are used, these include the broadcast transmission standards of NTSC in North America and Japan, and PAL or SECAM elsewhere, utilizing the full refresh rates of those standards. ATV includes the study of building of such transmitters and receivers, and the study of radio propagation of signals travelling between transmitting and receiving stations.

ATV is an extension of amateur radio. It is also called ham TV or fast-scan TV (FSTV), as opposed to slow-scan television (SSTV).

View the full Wikipedia page for Amateur television
↑ Return to Menu

Receiver (radio) in the context of Emergency vehicle equipment

Emergency vehicle equipment is any equipment fitted to, or carried by, an emergency vehicle, other than the equipment that a standard non-emergency vehicle is fitted with (such as headlights, steering wheels, and windshield/windscreens).

View the full Wikipedia page for Emergency vehicle equipment
↑ Return to Menu

Receiver (radio) in the context of Arecibo telescope

The Arecibo Telescope was a 305 m (1,000 ft) spherical reflector radio telescope built into a natural sinkhole at the Arecibo Observatory located near Arecibo, Puerto Rico. A cable-mounted, steerable receiver and several radar transmitters for emitting signals were mounted 150 m (492 ft) above the dish. Completed in November 1963, the Arecibo Telescope was the world's largest single-aperture telescope for 53 years, until it was surpassed in July 2016 by the Five-hundred-meter Aperture Spherical Telescope (FAST) in Guizhou, China. Decommissioning the Arecibo Telescope was announced in November 2020, and the telescope collapsed in December 2020.

The Arecibo Telescope was primarily used for research in radio astronomy, atmospheric science, and radar astronomy, as well as for programs that search for extraterrestrial intelligence (SETI). Scientists wanting to use the observatory submitted proposals that were evaluated by independent scientific referees. NASA also used the telescope for near-Earth object detection programs. The observatory, funded primarily by the National Science Foundation (NSF) with partial support from NASA, was managed by Cornell University from its completion in 1963 until 2011, after which it was transferred to a partnership led by SRI International. In 2018, a consortium led by the University of Central Florida assumed operation of the facility.

View the full Wikipedia page for Arecibo telescope
↑ Return to Menu

Receiver (radio) in the context of Crystal radio

A crystal radio receiver, also called a crystal set, is a simple radio receiver, popular in the early days of radio. It uses only the power of the received radio signal to produce sound, needing no external power. It is named for its most important component, a crystal detector, originally made from a piece of crystalline mineral such as galena. This component is now called a diode.

Crystal radios are the simplest type of radio receiver and can be made with a few inexpensive parts, such as a wire for an antenna, a coil of wire, a capacitor, a crystal detector, and earphones. However they are passive receivers, while other radios use an amplifier powered by current from a battery or wall outlet to make the radio signal louder. Thus, crystal sets produce rather weak sound and must be listened to with sensitive earphones, and can receive stations only within a limited range of the transmitter.

View the full Wikipedia page for Crystal radio
↑ Return to Menu

Receiver (radio) in the context of Squelch

In telecommunications, squelch is a circuit function that acts to suppress the audio (or video) output of a receiver in the absence of a strong input signal. Essentially, squelch is a specialized type of noise gate designed to suppress weak signals. Squelch is used in two-way radios and VHF/UHF radio scanners to eliminate the sound of noise when the radio is not receiving a desired transmission.

View the full Wikipedia page for Squelch
↑ Return to Menu

Receiver (radio) in the context of Master control

Master control is the technical hub of a broadcast operation common among most over-the-air television stations and television networks. It is distinct from a production control room (PCR) in television studios where the activities such as switching from camera to camera are coordinated. A transmission control room (TCR) is usually smaller in size and is a scaled down version of centralcasting.

Master control is the final point before a signal is transmitted over-the-air for terrestrial television or cablecast, satellite provider for broadcast, or sent on to a cable television operator. Television master control rooms include banks of video monitors, satellite receivers, videotape machines, video servers, transmission equipment, and, more recently, computer broadcast automation equipment for recording and playback of television programming.

View the full Wikipedia page for Master control
↑ Return to Menu

Receiver (radio) in the context of Selectivity (radio)

Selectivity is a measure of the performance of a radio receiver to respond only to the radio signal it is tuned to (such as a radio station) and reject other signals nearby in frequency, such as another broadcast on an adjacent channel.

Selectivity is usually measured as a ratio in decibels (dB), comparing the signal strength received against that of a similar signal on another frequency. If the signal is at the adjacent channel of the selected signal, this measurement is also known as adjacent-channel rejection ratio (ACRR).

View the full Wikipedia page for Selectivity (radio)
↑ Return to Menu