Ray (geometry) in the context of "Angular unit"

Play Trivia Questions online!

or

Skip to study material about Ray (geometry) in the context of "Angular unit"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ray (geometry) in the context of Direction (geometry)

In geometry, direction, also known as spatial direction or vector direction, is the common characteristic of all rays which coincide when translated to share a common endpoint; equivalently, it is the common characteristic of vectors (such as the relative position between a pair of points) which can be made equal by scaling (by some positive scalar multiplier).

Two vectors sharing the same direction are said to be codirectional or equidirectional. All codirectional line segments sharing the same size (length) are said to be equipollent. Two equipollent segments are not necessarily coincident; for example, a given direction can be evaluated at different starting positions, defining different unit directed line segments (as a bound vector instead of a free vector). Two colinear rays or oriented line segments (sharing the same supporting line) are not necessarily codirectional and vice versa.

↑ Return to Menu

Ray (geometry) in the context of Subtended angle

In geometry, an angle subtended (from Latin for "stretched under") by a line segment at an arbitrary vertex is formed by the two rays between the vertex and each endpoint of the segment. For example, a side of a triangle subtends the opposite angle.

More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc.For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints.

↑ Return to Menu

Ray (geometry) in the context of Angular distance

Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere. When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation.

Angular distance appears in mathematics (in particular geometry and trigonometry) and all natural sciences (e.g., kinematics, astronomy, and geophysics). In the classical mechanics of rotating objects, it appears alongside angular velocity, angular acceleration, angular momentum, moment of inertia and torque.

↑ Return to Menu

Ray (geometry) in the context of Angle

In geometry, an angle is formed by two lines that meet at a point. Each line is called a side of the angle, and the point they share is called the vertex of the angle. The term angle is used to denote both geometric figures and their size or magnitude as associated quantity. Angular measure or measure of angle are sometimes used to distinguish between the measure of the quantity and figure itself. The measurement of angles is intrinsically linked with circles and rotation, and this is often visualized or defined using the arc of a circle centered at the vertex and lying between the sides.

↑ Return to Menu

Ray (geometry) in the context of Normal (geometry)

In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the infinite straight line perpendicular to the tangent line to the curve at the point.

A normal vector is a vector perpendicular to a given object at a particular point.A normal vector of length one is called a unit normal vector or normal direction. A curvature vector is a normal vector whose length is the curvature of the object. Multiplying a normal vector by −1 results in the opposite vector, which may be used for indicating sides (e.g., interior or exterior) or orientation (e.g., clockwise vs. counterclockwise, right handed vs. left handed).

↑ Return to Menu

Ray (geometry) in the context of Bearing (angle)

In navigation, bearing or azimuth is the horizontal angle between the direction of an object and north or another object. The angle value can be specified in various angular units, such as degrees, mils, or grad. More specifically:

  • Absolute bearing refers to the clockwise angle between the magnetic north (magnetic bearing) or true north (true bearing) and an object. For example, an object to due east would have an absolute bearing of 90 degrees. Thus, it is the same as azimuth.
  • Relative bearing refers to the angle between the craft's forward direction (heading) and the location of another object. For example, an object relative bearing of 0 degrees would be immediately in front; an object relative bearing 180 degrees would be behind. Bearings can be measured in mils, points, or degrees. Thus, it is the same as an azimuth difference (modulo +/- 360 degrees).
↑ Return to Menu

Ray (geometry) in the context of Polar coordinate system

In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are

  • the point's distance from a reference point called the pole, and
  • the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole.

The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. The pole is analogous to the origin in a Cartesian coordinate system.

↑ Return to Menu

Ray (geometry) in the context of Cone (geometry)

In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the apex or vertex.

A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base. In the case of line segments, the cone does not extend beyond the base, while in the case of half-lines, it extends infinitely far. In the case of lines, the cone extends infinitely far in both directions from the apex, in which case it is sometimes called a double cone. Each of the two halves of a double cone split at the apex is called a nappe.

↑ Return to Menu