Rates of change in the context of "Radio frequencies"

Play Trivia Questions online!

or

Skip to study material about Rates of change in the context of "Radio frequencies"

Ad spacer

⭐ Core Definition: Rates of change

In mathematics, a rate is the quotient of two quantities, often represented as a fraction. If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change in the other (dependent) variable. In some cases, it may be regarded as a change to a value, which is caused by a change of a value in respect to another value. For example, acceleration is a change in velocity with respect to time.

Temporal rate is a common type of rate, in which the denominator is a time duration ("per unit of time"), such as in speed, heart rate, and flux. In fact, often rate is a synonym of rhythm or frequency, a count per second (i.e., hertz); e.g., radio frequencies or sample rates.In describing the units of a rate, the word "per" is used to separate the units of the two measurements used to calculate the rate; for example, a heart rate is expressed as "beats per minute".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Rates of change in the context of Time

Time is the continuous progression of existence that occurs in an apparently irreversible succession from the past, through the present, and into the future. Time dictates all forms of action, age, and causality, being a component quantity of various measurements used to sequence events, to compare the duration of events (or the intervals between them), and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions.

Time is primarily measured in linear spans or periods, ordered from shortest to longest. Practical, human-scale measurements of time are performed using clocks and calendars, reflecting a 24-hour day collected into a 365-day year linked to the astronomical motion of the Earth. Scientific measurements of time instead vary from Planck time at the shortest to billions of years at the longest. Measurable time is believed to have effectively begun with the Big Bang 13.8 billion years ago, encompassed by the chronology of the universe. Modern physics understands time to be inextricable from space within the concept of spacetime described by general relativity. Time can therefore be dilated by velocity and matter to pass faster or slower for an external observer, though this is considered negligible outside of extreme conditions, namely relativistic speeds or the gravitational pulls of black holes.

↑ Return to Menu