Raster scan in the context of "Semiconductor memory"

Play Trivia Questions online!

or

Skip to study material about Raster scan in the context of "Semiconductor memory"

Ad spacer

⭐ Core Definition: Raster scan

A raster scan, or raster scanning, is the rectangular pattern of image capture and reconstruction in television. By analogy, the term is used for raster graphics, the pattern of image storage and transmission used in most computer bitmap image systems. The word raster comes from the Latin word rastrum (a rake), which is derived from radere (to scrape); see also rastrum, an instrument for drawing musical staff lines. The pattern left by the tines of a rake, when drawn straight, resembles the parallel lines of a raster: this line-by-line scanning is what creates a raster. It is a systematic process of covering the area progressively, one line at a time. Although often a great deal faster, it is similar in the most general sense to how one's gaze travels when one reads lines of text.

In most modern graphics cards the data to be drawn is stored internally in an area of semiconductor memory called the framebuffer. This memory area holds the values for each pixel on the screen. These values are retrieved from the refresh buffer and painted onto the screen one row at a time.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Raster scan in the context of Voyager Golden Record

The Voyager Golden Records are two identical phonograph records, with one copy aboard each of the two Voyager spacecraft launched in 1977. The records contain sounds and data to reconstruct raster scan images selected to portray the diversity of life and culture on Earth, and are intended for any intelligent extraterrestrial life form who may find them. The records are a time capsule.

Although neither Voyager spacecraft is heading toward any particular star, Voyager 1 will pass within 1.6 light-years' distance of the star Gliese 445, currently in the constellation Camelopardalis, in about 40,000 years.

↑ Return to Menu

Raster scan in the context of Scanning electron microscope

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector (Everhart–Thornley detector). The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

Specimens are observed in high vacuum in a conventional SEM, or in low vacuum or wet conditions in a variable pressure or environmental SEM, and at a wide range of cryogenic or elevated temperatures with specialized instruments.

↑ Return to Menu

Raster scan in the context of Cathode-ray tube

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

In CRT TVs and computer monitors, the entire front area of the tube is scanned repeatedly and systematically in a fixed pattern called a raster. In color devices, an image is produced by controlling the intensity of each of three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference. In modern CRT monitors and TVs the beams are bent by magnetic deflection, using a deflection yoke. Electrostatic deflection is commonly used in oscilloscopes.

↑ Return to Menu

Raster scan in the context of Refresh rate

The refresh rate, also known as vertical refresh rate, vertical scan rate or vertical frequency in reference to terminology originating with cathode-ray tubes (CRTs), is the number of times per second that a raster-based display device displays a new image. This is independent from frame rate, which describes how many images are stored or generated every second by the device driving the display. On CRT displays, higher refresh rates produce less flickering, thereby reducing eye strain. In other technologies such as liquid-crystal displays, the refresh rate affects only how often the image can potentially be updated.

Non-raster displays may not have a characteristic refresh rate. Vector displays, for instance, do not trace the entire screen, only the actual lines comprising the displayed image, so refresh speed may differ by the size and complexity of the image data. For computer programs or telemetry, the term is sometimes applied to how frequently a datum is updated with a new external value from another source (for example; a shared public spreadsheet or hardware feed).

↑ Return to Menu

Raster scan in the context of Photographic paper

Photographic paper is a paper coated with a light-sensitive chemical, used for making photographic prints. When photographic paper is exposed to light, it captures a latent image that is then developed to form a visible image; with most papers the image density from exposure can be sufficient to not require further development, aside from fixing and clearing, though latent exposure is also usually present. The light-sensitive layer of the paper is called the emulsion, and functions similarly to photographic film. The most common chemistry used is gelatin silver, but other alternatives have also been used.

The print image is traditionally produced by interposing a photographic negative between the light source and the paper, either by direct contact with a large negative (forming a contact print) or by projecting the shadow of the negative onto the paper (producing an enlargement). The initial light exposure is carefully controlled to produce a grayscale image on the paper with appropriate contrast and gradation. Photographic paper may also be exposed to light using digital printers such as the LightJet, with a camera (to produce a photographic negative), by scanning a modulated light source over the paper, or by placing objects upon it (to produce a photogram).

↑ Return to Menu

Raster scan in the context of Scan line

A scan line (also scanline) is one line, or row, in a raster scanning pattern, such as a line of video on a cathode-ray tube (CRT) display of a television set or computer monitor.

On CRT screens the horizontal scan lines are visually discernible, even when viewed from a distance, as alternating colored lines and black lines, especially when a progressive scan signal with below maximum vertical resolution is displayed. This is sometimes used today as a visual effect in computer graphics.

↑ Return to Menu

Raster scan in the context of Deflection yoke

A deflection yoke is a kind of magnetic lens, used in cathode-ray tubes to scan the electron beam both vertically and horizontally over the whole screen.

In a CRT television, the electron beam is moved in a raster scan on the screen. By adjusting the strength of the beam current, the brightness of the light produced by the phosphor on the screen can be varied. The cathode ray tube allowed the development of all-electronic television.

↑ Return to Menu

Raster scan in the context of Vector display

A vector monitor, vector display, or calligraphic display is a display device used for computer graphics up through the 1970s. It is a type of CRT, similar to that of an early oscilloscope. In a vector display, the image is composed of drawn lines rather than a grid of glowing pixels as in raster graphics. The electron beam follows an arbitrary path, tracing the connected sloped lines rather than following the same horizontal raster path for all images. The beam skips over dark areas of the image without visiting their points.

Some refresh vector displays use a normal phosphor that fades rapidly and needs constant refreshing 30-40 times per second to show a stable image. These displays, such as the Imlac PDS-1, require some local refresh memory to hold the vector endpoint data. Other storage tube displays, such as the popular Tektronix 4010, use a special phosphor that continues glowing for many minutes. Storage displays do not require any local memory. In the 1970s, both types of vector displays were much more affordable than bitmap raster graphics displays when megapixel computer memory was still very expensive. Today, raster displays have replaced nearly all uses of vector displays.

↑ Return to Menu