Raoult's law in the context of François-Marie Raoult


Raoult's law in the context of François-Marie Raoult

⭐ Core Definition: Raoult's law

Raoult's law (/ˈrɑːlz/ law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

Mathematically, Raoult's law for a single component in an ideal solution is stated as

↓ Menu
HINT:

In this Dossier

Raoult's law in the context of Cloud physics

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water (warm clouds), tiny crystals of ice (cold clouds), or both (mixed phase clouds), along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

In warm clouds, larger cloud droplets fall at a higher terminal velocity; because at a given velocity, the drag force per unit of droplet weight on smaller droplets is larger than on large droplets. The large droplets can then collide with small droplets and combine to form even larger drops. When the drops become large enough that their downward velocity (relative to the surrounding air) is greater than the upward velocity (relative to the ground) of the surrounding air, the drops can fall as precipitation. The collision and coalescence is not as important in mixed phase clouds where the Bergeron process dominates. Other important processes that form precipitation are riming, when a supercooled liquid drop collides with a solid snowflake, and aggregation, when two solid snowflakes collide and combine. The precise mechanics of how a cloud forms and grows is not completely understood, but scientists have developed theories explaining the structure of clouds by studying the microphysics of individual droplets. Advances in weather radar and satellite technology have also allowed the precise study of clouds on a large scale.

View the full Wikipedia page for Cloud physics
↑ Return to Menu

Raoult's law in the context of Saturated fluid

In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase.

The concentration of a vapor in contact with its liquid, especially at equilibrium, is often expressed in terms of vapor pressure, which will be a partial pressure (a part of the total gas pressure) if any other gas(es) are present with the vapor. The equilibrium vapor pressure of a liquid is in general strongly dependent on temperature. At vapor–liquid equilibrium, a liquid with individual components in certain concentrations will have an equilibrium vapor in which the concentrations or partial pressures of the vapor components have certain values depending on all of the liquid component concentrations and the temperature. The converse is also true: if a vapor with components at certain concentrations or partial pressures is in vapor–liquid equilibrium with its liquid, then the component concentrations in the liquid will be determined dependent on the vapor concentrations and on the temperature. The equilibrium concentration of each component in the liquid phase is often different from its concentration (or vapor pressure) in the vapor phase, but there is a relationship. The VLE concentration data can be determined experimentally or approximated with the help of theories such as Raoult's law, Dalton's law, and Henry's law.

View the full Wikipedia page for Saturated fluid
↑ Return to Menu

Raoult's law in the context of Ideal solution

An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing. The vapor pressures of all components obey Raoult's law across the entire range of concentrations, and the activity coefficient (which measures deviation from ideality) is equal to one for each component.

The concept of an ideal solution is fundamental to both thermodynamics and chemical thermodynamics and their applications, such as the explanation of colligative properties.

View the full Wikipedia page for Ideal solution
↑ Return to Menu