Randomised decision rule in the context of Confidence intervals


Randomised decision rule in the context of Confidence intervals

Randomised decision rule Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Randomised decision rule in the context of "Confidence intervals"


⭐ Core Definition: Randomised decision rule

In statistical decision theory, a randomised decision rule or mixed decision rule is a decision rule that associates probabilities with deterministic decision rules. In finite decision problems, randomised decision rules define a risk set which is the convex hull of the risk points of the nonrandomised decision rules.

As nonrandomised alternatives always exist to randomised Bayes rules, randomisation is not needed in Bayesian statistics, although frequentist statistical theory sometimes requires the use of randomised rules to satisfy optimality conditions such as minimax, most notably when deriving confidence intervals and hypothesis tests about discrete probability distributions.

↓ Menu
HINT:

In this Dossier

Randomised decision rule in the context of Point estimation

In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate.

Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference. More generally, a point estimator can be contrasted with a set estimator. Examples are given by confidence sets or credible sets. A point estimator can also be contrasted with a distribution estimator. Examples are given by confidence distributions, randomized estimators, and Bayesian posteriors.

View the full Wikipedia page for Point estimation
↑ Return to Menu