Random-access memory in the context of Video display controller


Random-access memory in the context of Video display controller

Random-access memory Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Random-access memory in the context of "Video display controller"


⭐ Core Definition: Random-access memory

Random-access memory (RAM; /ræm/) is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks and magnetic tape), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

In modern technology, random-access memory takes the form of integrated circuit (IC) chips with MOS (metal–oxide–semiconductor) memory cells. RAM is normally associated with volatile types of memory where stored information is lost if power is removed. The two main types of volatile random-access semiconductor memory are static random-access memory (SRAM) and dynamic random-access memory (DRAM).

↓ Menu
HINT:

In this Dossier

Random-access memory in the context of Semiconductor device fabrication

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as RAM and flash memory). It is a multiple-step photolithographic and physico-chemical process (with steps such as thermal oxidation, thin-film deposition, ion implantation, etching) during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications. Steps such as etching and photolithography can be used to manufacture other devices, such as LCD and OLED displays.

The fabrication process is performed in highly specialized semiconductor fabrication plants, also called foundries or "fabs", with the central part being the "clean room". In more advanced semiconductor devices, such as modern 14/10/7 nm nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated, with automated material handling systems taking care of the transport of wafers from machine to machine.

View the full Wikipedia page for Semiconductor device fabrication
↑ Return to Menu

Random-access memory in the context of Computer hardware

Computer hardware includes the physical parts of a computer, such as the central processing unit (CPU), random-access memory (RAM), motherboard, computer data storage, graphics card, sound card, and computer case. It includes external devices such as a monitor, mouse, keyboard, and speakers.

By contrast, software is a set of written instructions that can be stored and run by hardware. Hardware derived its name from the fact it is hard or rigid with respect to changes, whereas software is soft because it is easy to change.

View the full Wikipedia page for Computer hardware
↑ Return to Menu

Random-access memory in the context of Williams tube

The Williams tube, or the Williams–Kilburn tube named after British inventors Freddie Williams and Tom Kilburn, is an early form of computer memory. It was the first random-access digital storage device, and was used successfully in several early computers.

The Williams tube works by displaying a grid of dots on a cathode-ray tube (CRT). Due to the way CRTs work, this creates a small charge of static electricity over each dot. The charge at the location of each of the dots is read by a thin metal sheet just in front of the display. Since the display faded over time, it was periodically refreshed. It operates faster than earlier acoustic delay-line memory, at the speed of the electrons inside the vacuum tube, rather than at the speed of sound. The system was adversely affected by nearby electrical fields, and required frequent adjustment to remain operational. Williams–Kilburn tubes were used primarily on high-speed computer designs.

View the full Wikipedia page for Williams tube
↑ Return to Menu

Random-access memory in the context of Pilot 5000

The Pilot 1000 and Pilot 5000 are the first generations of PDAs produced by Palm Computing (then a subsidiary of U.S. Robotics). It was introduced in March 1996.

The Pilot uses a Motorola 68328 processor at 16 MHz, and had 128 kB (Pilot 1000) or 512 kB (Pilot 5000) built in Random-access memory.

View the full Wikipedia page for Pilot 5000
↑ Return to Menu

Random-access memory in the context of Microcontroller

A microcontroller (MC, uC, or μC) or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more processor cores along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.

In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on a chip (SoC). A SoC may include a microcontroller as one of its components but usually integrates it with advanced peripherals like a graphics processing unit (GPU), a Wi-Fi module, or one or more coprocessors.

View the full Wikipedia page for Microcontroller
↑ Return to Menu

Random-access memory in the context of Memory chip

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory (such as EPROM, EEPROM and flash memory) uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

Most types of semiconductor memory have the property of random access, which means that it takes the same amount of time to access any memory location, so data can be efficiently accessed in any random order. This contrasts with data storage media such as CDs which read and write data consecutively and therefore the data can only be accessed in the same sequence it was written. Semiconductor memory also has much faster access times than other types of data storage; a byte of data can be written to or read from semiconductor memory within a few nanoseconds, while access time for rotating storage such as hard disks is in the range of milliseconds. For these reasons it is used for primary storage, to hold the program and data the computer is currently working on, among other uses.

View the full Wikipedia page for Memory chip
↑ Return to Menu

Random-access memory in the context of Timex Sinclair 1000

The Timex Sinclair 1000 (or T/S 1000) was the first computer produced by Timex Sinclair, a joint venture between Timex Corporation and Sinclair Research. It was launched in July 1982, with a US sales price of US$99.95, making it the cheapest home computer at the time; it was advertised as "the first computer under $100". The computer was aimed at regular home users. As purchased, the T/S 1000 was fully assembled and ready to be plugged into home televisions, which served as a video monitor. The T/S 1000 was a slightly modified version of the Sinclair ZX81 with an NTSC RF modulator, for use with North American TVs, instead of PAL for European TVs. The T/S 1000 doubled the onboard RAM from 1 KB to 2 KB; further expandable by 16 KB through the cartridge port. The T/S 1000's casing had slightly more internal shielding but remained the same as Sinclair's, including the membrane keyboard, which had modified nomenclature to suit American tastes (e.g. "DELETE" instead of "RUBOUT") Just like the ZX81, the T/S 1000 had black-and-white graphics and no sound.

It was followed in 1983 by an improved version, the Timex Sinclair 1500 (or T/S 1500) which incorporated the 16 KB RAM expansion and featured a lower price (US$80). However, the T/S 1500 did not achieve market success, given that by this time the marketplace was dominated by Commodore, Radio Shack, Atari and Apple.

View the full Wikipedia page for Timex Sinclair 1000
↑ Return to Menu

Random-access memory in the context of Framebuffer

A framebuffer (frame buffer, or sometimes framestore) is a portion of random-access memory (RAM) containing a bitmap that drives a video display. It is a memory buffer containing data representing all the pixels in a complete video frame. Modern video cards contain framebuffer circuitry in their cores. This circuitry converts an in-memory bitmap into a video signal that can be displayed on a computer monitor.

In computing, a screen buffer is a part of computer memory used by a computer application for the representation of the content to be shown on the computer display. The screen buffer may also be called the video buffer, the regeneration buffer, or regen buffer for short. Screen buffers should be distinguished from video memory. To this end, the term off-screen buffer is also used.

View the full Wikipedia page for Framebuffer
↑ Return to Menu

Random-access memory in the context of Memory management

Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway (multitasking) at any time.

Several methods have been devised that increase the effectiveness of memory management. Virtual memory systems separate the memory addresses used by a process from actual physical addresses, allowing separation of processes and increasing the size of the virtual address space beyond the available amount of RAM using paging or swapping to secondary storage. The quality of the virtual memory manager can have an extensive effect on overall system performance. The system allows a computer to appear as if it may have more memory available than physically present, thereby allowing multiple processes to share it.

View the full Wikipedia page for Memory management
↑ Return to Menu

Random-access memory in the context of W65C816S

The W65C816S (also 65C816 or 65816) is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1985, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System.

The 65 in the part's designation comes from its 65C02 compatibility mode, and the 816 signifies that the MPU has selectable 8- and 16-bit register sizes. In addition to the availability of 16-bit registers, the W65C816S extends memory addressing to 24 bits, supporting up to 16 megabytes of random-access memory. It has an enhanced instruction set and a 16-bit stack pointer, as well as several new electrical signals for improved system hardware management.

View the full Wikipedia page for W65C816S
↑ Return to Menu

Random-access memory in the context of Processor register

A processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900.

Almost all computers, whether load/store architecture or not, load items of data from a larger memory into registers where they are used for arithmetic operations, bitwise operations, and other operations, and are manipulated or tested by machine instructions. Manipulated items are then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either static or dynamic random-access memory (RAM) as main memory, with the latter usually accessed via one or more cache levels.

View the full Wikipedia page for Processor register
↑ Return to Menu

Random-access memory in the context of Virtual memory

In computing, virtual memory, or virtual storage, is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" which "creates the illusion to users of a very large (main) memory".

The computer's operating system, using a combination of hardware and software indirection, maps memory addresses used by a program, called virtual addresses, into physical addresses in computer memory. Main storage, as seen by a process or task, appears as a contiguous address space or collection of contiguous segments. The operating system manages virtual address spaces and the assignment of real memory to virtual memory. Address translation hardware in the CPU, often referred to as a memory management unit (MMU), automatically translates virtual addresses to physical addresses. Software within the operating system may extend these capabilities, utilizing, e.g., disk storage, to provide a virtual address space that can exceed the capacity of real memory and thus reference more memory than is physically present in the computer.

View the full Wikipedia page for Virtual memory
↑ Return to Menu

Random-access memory in the context of Gigabyte

The gigabyte (/ˈɡɪɡəbt, ˈɪɡəbt/) is a multiple of the unit byte for digital information. The prefix giga means 10 in the International System of Units (SI). Therefore, one gigabyte is one billion bytes. The unit symbol for the gigabyte is GB.

This definition is used in all contexts of science (especially data science), engineering, business, and many areas of computing, including storage capacities of hard drives, solid-state drives, and tapes, as well as data transmission speeds. The term is also used in some fields of computer science and information technology to denote 1073741824 (1024 or 2) bytes, however, particularly for sizes of RAM. Thus, some usage of gigabyte has been ambiguous. To resolve this difficulty, IEC 80000-13 clarifies that a gigabyte (GB) is 10 bytes and specifies the term gibibyte (GiB) to denote 2 bytes. These differences are still readily seen, for example, when a 400 GB drive's capacity is displayed by Microsoft Windows as 372 GB instead of 372 GiB. Analogously, a memory module that is labeled as having the size "1GB" has one gibibyte (1GiB) of storage capacity.

View the full Wikipedia page for Gigabyte
↑ Return to Menu

Random-access memory in the context of Gaming computer

A gaming computer, also known as a gaming PC, is a specialized personal computer designed for playing PC games at high standards. They typically differ from mainstream personal computers by using high-performance graphics cards, a high core-count CPU with higher raw performance and higher-performance RAM. Gaming PCs are also used for other demanding tasks such as video editing. While often in desktop form, gaming PCs may also be laptops or handhelds.

View the full Wikipedia page for Gaming computer
↑ Return to Menu