Radiant power in the context of Radiometry


Radiant power in the context of Radiometry

Radiant power Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Radiant power in the context of "Radiometry"


⭐ Core Definition: Radiant power

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second (J/s), while that of spectral flux in frequency is the watt per hertz (W/Hz) and that of spectral flux in wavelength is the watt per metre (W/m)—commonly the watt per nanometre (W/nm).

↓ Menu
HINT:

In this Dossier

Radiant power in the context of Luminosity

Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects.

In SI units, luminosity is measured in joules per second, or watts. In astronomy, values for luminosity are often given in the terms of the luminosity of the Sun, L. Luminosity can also be given in terms of the astronomical magnitude system: the absolute bolometric magnitude (Mbol) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band.

View the full Wikipedia page for Luminosity
↑ Return to Menu

Radiant power in the context of Photometry (optics)

Photometry is a branch of optics that deals with measuring light in terms of its perceived brightness to the human eye. It is concerned with quantifying the amount of light that is emitted, transmitted, or received by an object or a system.

In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way. The weightings are standardized by the CIE and ISO.

View the full Wikipedia page for Photometry (optics)
↑ Return to Menu

Radiant power in the context of Optical depth

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material.Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

In chemistry, a closely related quantity called "absorbance" or "decadic absorbance" is used instead of optical depth: the common logarithm of the ratio of incident to transmitted radiant power through a material. It is the optical depth divided by loge(10), because of the different logarithm bases used.

View the full Wikipedia page for Optical depth
↑ Return to Menu

Radiant power in the context of Photocurrent

Photocurrent is the electric current through a photosensitive device, such as a photodiode, as the result of exposure to radiant power. The photocurrent may occur as a result of the photoelectric, photoemissive, or photovoltaic effect. The photocurrent may be enhanced by internal gain caused by interaction among ions and photons under the influence of applied fields, such as occurs in an avalanche photodiode (APD).

When a suitable radiation is used, the photoelectric current is directly proportional to intensity of radiation and increases with the increase in accelerating potential till the stage is reached when photo-current becomes maximum and does not increase with further increase in accelerating potential. The highest (maximum) value of the photo-current is called saturation current. The value of retarding potential at which photo-current becomes zero is called cut-off voltage or stopping potential for the given frequency of the incident ray.

View the full Wikipedia page for Photocurrent
↑ Return to Menu