RAM in the context of Read/write memory


RAM in the context of Read/write memory

RAM Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about RAM in the context of "Read/write memory"


⭐ Core Definition: RAM

Random-access memory (RAM; /ræm/) is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks and magnetic tape), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

In modern technology, random-access memory takes the form of integrated circuit (IC) chips with MOS (metal–oxide–semiconductor) memory cells. RAM is normally associated with volatile types of memory where stored information is lost if power is removed. The two main types of volatile random-access semiconductor memory are static random-access memory (SRAM) and dynamic random-access memory (DRAM).

↓ Menu
HINT:

In this Dossier

RAM in the context of Electronic circuit

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical circuit. For a circuit to be referred to as electronic, rather than electrical, generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another.

Circuits can be constructed of discrete components connected by individual pieces of wire, but today it is much more common to create interconnections by photolithographic techniques on a laminated substrate (a printed circuit board or PCB) and solder the components to these interconnections to create a finished circuit. In an integrated circuit or IC, the components and interconnections are formed on the same substrate, typically a semiconductor such as doped silicon or (less commonly) gallium arsenide.

View the full Wikipedia page for Electronic circuit
↑ Return to Menu

RAM in the context of Dynamic linker

A dynamic linker is an operating system feature that loads and links dynamic libraries for an executable at runtime; before or while it is running. Although the details vary by operating system, typically, a dynamic linker copies the content of each library from persistent storage to RAM, fills jump tables and relocates pointers.

Linking is often referred to as a process that is performed when the executable is compiled, while a dynamic linker is a special part of an operating system that loads external shared libraries into a running process and then binds those shared libraries dynamically to the running process. This approach is also called dynamic linking or late linking.

View the full Wikipedia page for Dynamic linker
↑ Return to Menu

RAM in the context of Very large-scale integration

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (metal oxide semiconductor) chips were developed and then widely adopted, enabling complex semiconductor and telecommunications technologies. Microprocessors and memory chips are VLSI devices.

Before the introduction of VLSI technology, most ICs had a limited set of functions they could perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI enables IC designers to add all of these into one chip.

View the full Wikipedia page for Very large-scale integration
↑ Return to Menu

RAM in the context of Computer memory

Computer memory stores information, such as data and programs, for immediate use in the computer. The term memory is often synonymous with the terms RAM, main memory, or primary storage. Archaic synonyms for main memory include core (for magnetic core memory) and store.

Main memory operates at a high speed compared to mass storage which is slower but less expensive per bit and higher in capacity. Besides storing opened programs and data being actively processed, computer memory serves as a mass storage cache and write buffer to improve both reading and writing performance. Operating systems typically borrow RAM capacity for caching so long as it is not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called virtual memory.

View the full Wikipedia page for Computer memory
↑ Return to Menu

RAM in the context of Upgrade

An upgrade is the result of improving something by replacing part of it or adding additional parts. For example, one can upgrade a computer by replacing the CPU with a faster one and by adding more RAM, and afterwards, the computer is an upgrade. Although often used in the context of technology, anything can be upgraded; improved.

Often an update is an upgrade but not always. Update only implies newer; more up-to-date. An update could degrade, or changing to an older version could be an upgrade.

View the full Wikipedia page for Upgrade
↑ Return to Menu

RAM in the context of Integrated circuit design

Integrated circuit design, semiconductor design, chip design or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits (ICs). An IC consists of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

IC design can be divided into the broad categories of digital and analog IC design. Digital IC design is to produce components such as microprocessors, FPGAs, memories (RAM, ROM, and flash) and digital ASICs. Digital design focuses on logical correctness, maximizing circuit density, and placing circuits so that clock and timing signals are routed efficiently. Analog IC design also has specializations in power IC design and RF IC design. Analog IC design is used in the design of op-amps, linear regulators, phase locked loops, oscillators and active filters. Analog design is more concerned with the physics of the semiconductor devices such as gain, matching, power dissipation, and resistance. Fidelity of analog signal amplification and filtering is usually critical, and as a result analog ICs use larger area active devices than digital designs and are usually less dense in circuitry.

View the full Wikipedia page for Integrated circuit design
↑ Return to Menu

RAM in the context of 32-bit

In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in a maximum of 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GiB of RAM to be accessed, far more than previous generations of system architecture allowed.

32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Macintosh. Fully 32-bit microprocessors such as the HP FOCUS, Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This generation of personal computers coincided with and enabled the first mass-adoption of the World Wide Web. While 32-bit architectures are still widely-used in specific applications, the PC and server market has moved on to 64 bits with x86-64 and other 64-bit architectures since the mid-2000s with installed memory often exceeding the 32-bit address limit of 4 GiB on entry level computers. The latest generation of smartphones have also switched to 64 bits.

View the full Wikipedia page for 32-bit
↑ Return to Menu

RAM in the context of Sinclair ZX81

The ZX81 is a home computer developed by Sinclair Research and manufactured in Dundee, Scotland, by Timex Corporation. It was launched in the United Kingdom in March 1981 as the successor to Sinclair's ZX80 and designed to be a low-cost introduction to home computing for the general public. It was hugely successful; more than 1.5 million units were sold. In the United States it was initially sold as the ZX-81 under licence by Timex. Timex later produced its own versions of the ZX81: the Timex Sinclair 1000 and Timex Sinclair 1500. Unauthorized ZX81 clones were produced in several countries.

The ZX81 was designed to be small, simple, and above all, inexpensive. Video output is for a television set rather than a dedicated monitor. It contains only four silicon chips and 1 KB of RAM. It has no power switch or moving parts, excepting a VHF TV channel selector switch in some models. It has a pressure-sensitive membrane keyboard. Programs and data are loaded and saved onto compact audio cassettes. The ZX81's limitations prompted a market in third-party peripherals to improve its capabilities. Its distinctive case and keyboard brought designer Rick Dickinson a Design Council award.

View the full Wikipedia page for Sinclair ZX81
↑ Return to Menu

RAM in the context of Memory buffer

In computer science, a data buffer (or just buffer) is a region of memory used to store data temporarily while it is being moved from one place to another. Typically, the data is stored in a buffer as it is retrieved from an input device (such as a microphone) or just before it is sent to an output device (such as speakers); however, a buffer may be used when data is moved between processes within a computer, comparable to buffers in telecommunication. Buffers can be implemented in a fixed memory location in hardware or by using a virtual data buffer in software that points at a location in the physical memory.

In all cases, the data stored in a data buffer is stored on a physical storage medium. The majority of buffers are implemented in software, which typically use RAM to store temporary data because of its much faster access time when compared with hard disk drives. Buffers are typically used when there is a difference between the rate at which data is received and the rate at which it can be processed, or in the case that these rates are variable, for example in a printer spooler or in online video streaming. In a distributed computing environment, data buffers are often implemented in the form of burst buffers, which provides distributed buffering services.

View the full Wikipedia page for Memory buffer
↑ Return to Menu

RAM in the context of Booting

In computing, booting is the process of starting a computer as initiated via hardware such as a physical button on the computer or by a software command. After it is switched on, a computer's central processing unit (CPU) has no software in its main memory, so some process must load software into memory before it can be executed. This may be done by hardware or firmware in the CPU, or by a separate processor in the computer system. On some systems a power-on reset (POR) does not initiate booting and the operator must initiate booting after POR completes. IBM uses the term Initial Program Load (IPL) on some product lines.

Restarting a computer is also called rebooting, which can be "hard", e.g. after electrical power to the CPU is switched from off to on, or "soft", where the power is not cut. On some systems, a soft boot may optionally clear RAM to zero. Both hard and soft booting can be initiated by hardware, such as a button press, or by a software command. Booting is complete when the operative runtime system, typically the operating system and some applications, is attained.

View the full Wikipedia page for Booting
↑ Return to Menu