Quantum indeterminacy in the context of Observable


Quantum indeterminacy in the context of Observable

Quantum indeterminacy Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Quantum indeterminacy in the context of "Observable"


⭐ Core Definition: Quantum indeterminacy

Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that

Quantum indeterminacy can be quantitatively characterized by a probability distribution on the set of outcomes of measurements of an observable. The distribution is uniquely determined by the system state, and moreover quantum mechanics provides a recipe for calculating this probability distribution.

↓ Menu
HINT:

In this Dossier

Quantum indeterminacy in the context of Thought experiment

A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is meant to test our intuitions about morality or other fundamental philosophical questions.

View the full Wikipedia page for Thought experiment
↑ Return to Menu

Quantum indeterminacy in the context of Quantum tunneling

In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, should not be passable due to the object not having sufficient energy to pass or surmount the barrier.

Tunnelling is a consequence of the wave nature of matter and quantum indeterminacy. The quantum wave function describes the states of a particle or other physical system and wave equations such as the Schrödinger equation describe their evolution. In a system with a short, narrow potential barrier, a small part of wavefunction can appear outside of the barrier representing a probability for tunnelling through the barrier.

View the full Wikipedia page for Quantum tunneling
↑ Return to Menu

Quantum indeterminacy in the context of Quantum noise

Quantum noise is a type of noise in a quantum system due to quantum mechanical phenomena such as quantized fields and the uncertainty principle. This principle says that some observables cannot simultaneously be known with arbitrary precision. This indeterminate state of matter introduces a fluctuation in the value of properties of a quantum system, even at zero temperature. These fluctuations in the absence of thermal noise are known as zero-point energy fluctuations.

Quantum noise can also come from the discrete nature of the small quantum constituents such as electrons and quantum effects, such as photocurrents. An example of this form of quantum noise is shot noise as coined by J. Verdeyen which comes from the discrete arrival of photons or electrons in a detector. Because these quanta arrive randomly in time, even a perfectly steady current or light beam exhibits fluctuations in the detected signal.

View the full Wikipedia page for Quantum noise
↑ Return to Menu