Pyroclastic flow in the context of Peléan eruption


Pyroclastic flow in the context of Peléan eruption

Pyroclastic flow Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Pyroclastic flow in the context of "Peléan eruption"


⭐ Core Definition: Pyroclastic flow

A pyroclastic flow (also known as a pyroclastic density current or a pyroclastic cloud) is a fast-moving current of hot gas and volcanic matter (collectively known as tephra) that flows along the ground away from a volcano at average speeds of 100 km/h (30 m/s; 60 mph; 90 ft/s) but is capable of reaching speeds up to 700 km/h (190 m/s; 430 mph; 640 ft/s). The gases and tephra can reach temperatures of about 1,000 °C (1,800 °F).

Pyroclastic flows are the deadliest of all volcanic hazards and are produced as a result of certain explosive eruptions; they normally touch the ground and hurtle downhill or spread laterally under gravity. Their speed depends upon the density of the current, the volcanic output rate, and the gradient of the slope.

↓ Menu
HINT:

In this Dossier

Pyroclastic flow in the context of Volcanic rock

Volcanic rocks (often shortened to volcanics in scientific contexts) are rocks formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.

Volcanic rocks are among the most common rock types on Earth's surface, particularly in the oceans. On land, they are very common at plate boundaries and in flood basalt provinces. It has been estimated that volcanic rocks cover about 8% of the Earth's current land surface.

View the full Wikipedia page for Volcanic rock
↑ Return to Menu

Pyroclastic flow in the context of Eruption column

An eruption column or eruption plume is a cloud of super-heated ash and tephra suspended in gases emitted during an explosive volcanic eruption. The volcanic materials form a vertical column or plume that may rise many kilometers into the air above the vent of the volcano. In the most explosive eruptions, the eruption column may rise over 40 km (25 mi), penetrating the stratosphere. Injection of aerosols into the stratosphere by volcanoes is a major cause of short-term climate change.

A common occurrence in explosive eruptions is column collapse when the eruption column is or becomes too dense to be lifted high into the sky by air convection, and instead falls down the slopes of the volcano to form pyroclastic flows or surges (although the latter is less dense). On some occasions, if the material is not dense enough to fall, it may create pyrocumulonimbus clouds.

View the full Wikipedia page for Eruption column
↑ Return to Menu

Pyroclastic flow in the context of Explosive eruption

In volcanology, an explosive eruption is a volcanic eruption of the most violent type. A notable example is the 1980 eruption of Mount St. Helens. Such eruptions result when sufficient gas has dissolved under pressure within a viscous magma such that expelled lava violently froths into volcanic ash when pressure is suddenly lowered at the vent. Sometimes a lava plug will block the conduit to the summit, and when this occurs, eruptions are more violent. Explosive eruptions can expel as much as 1,000 kg (2,200 lb) per second of rocks, dust, gas and pyroclastic material, averaged over the duration of eruption, that travels at several hundred meters per second as high as 20 km (12 mi) into the atmosphere. This cloud may subsequently collapse, creating a fast-moving pyroclastic flow of hot volcanic matter.

View the full Wikipedia page for Explosive eruption
↑ Return to Menu

Pyroclastic flow in the context of Herculaneum

Herculaneum is an ancient Roman town located in the modern-day comune of Ercolano, Campania, Italy. Herculaneum was buried under a massive pyroclastic flow in the eruption of Mount Vesuvius in 79 AD.

Like the nearby city of Pompeii, Herculaneum is famous as one of the few ancient cities to be preserved nearly intact, as the solidified material from the volcano that blanketed the town protected it against looting and the elements. Although less known than Pompeii today, it was the first and, for a long time, the only discovered Vesuvian city (in 1709). Pompeii was revealed in 1748 and identified in 1763. Unlike Pompeii, the mainly pyroclastic material that covered Herculaneum carbonized and preserved more wooden objects such as roofs, beds, and doors, as well as other organic-based materials such as food and papyrus.

View the full Wikipedia page for Herculaneum
↑ Return to Menu

Pyroclastic flow in the context of Eruption of Mount Vesuvius in 79

In 79 AD, Mount Vesuvius, a stratovolcano located in the modern-day region of Campania, erupted, causing one of the deadliest eruptions in history. Vesuvius violently ejected a cloud of super-heated tephra and gases to a height of 33 km (21 mi), ejecting molten rock, pulverized pumice and hot ash at 1.5 million tons per second, ultimately releasing 100,000 times the thermal energy of the atomic bombings of Hiroshima and Nagasaki. The event gives its name to the Vesuvian type of volcanic eruption, characterised by columns of hot gases and ash reaching the stratosphere, although the event also included pyroclastic flows associated with Peléan eruptions.

The event destroyed several Roman towns and settlements in the area. Pompeii and Herculaneum, obliterated and buried underneath massive pyroclastic surges and ashfall deposits, are the most famous examples. Archaeological excavations have revealed much of the towns and the lives of the inhabitants, leading to the area becoming Vesuvius National Park and a UNESCO World Heritage Site.

View the full Wikipedia page for Eruption of Mount Vesuvius in 79
↑ Return to Menu

Pyroclastic flow in the context of Volcanic lake

A volcanogenic lake is a lake formed as a result of volcanic activity. They are generally a body of water inside an inactive volcanic crater (crater lakes) but can also be large volumes of molten lava within an active volcanic crater (lava lakes) and waterbodies constrained by lava flows, pyroclastic flows or lahars in valley systems. The term volcanic lake is also used to describe volcanogenic lakes, although it is more commonly assigned to those inside volcanic craters.

View the full Wikipedia page for Volcanic lake
↑ Return to Menu

Pyroclastic flow in the context of Katmai National Park and Preserve

Katmai National Park and Preserve is a United States national park and preserve in southwest Alaska, notable for the Valley of Ten Thousand Smokes and for its brown bears. The park and preserve encompass 4,093,077 acres (6,395.43 sq mi; 16,564.09 km), which is between the sizes of Connecticut and New Jersey. Most of the national park is a designated wilderness area. The park is named after Mount Katmai, its centerpiece stratovolcano. The park is located on the Alaska Peninsula, across from Kodiak Island, with headquarters in nearby King Salmon, about 290 miles (470 km) southwest of Anchorage. The area was first designated a national monument in 1918 to protect the area around the major 1912 volcanic eruption of Novarupta, which formed the Valley of Ten Thousand Smokes, a 40-square-mile (100 km), 100-to-700-foot-deep (30 to 213 m) pyroclastic flow. The park includes as many as 18 individual volcanoes, seven of which have been active since 1900.

Initially designated because of its volcanic history, the monument was left undeveloped and largely unvisited until the 1950s. The monument and surrounding lands became appreciated for their wide variety of wildlife, including an abundance of sockeye salmon and the brown bears that feed upon them. After a series of boundary expansions, the present national park and preserve were established in 1980 under the Alaska National Interest Lands Conservation Act.

View the full Wikipedia page for Katmai National Park and Preserve
↑ Return to Menu

Pyroclastic flow in the context of Ignimbrite

Ignimbrite is a type of volcanic rock, consisting of a typically welded tuff. Ignimbrites form from the deposits of pyroclastic flows, which are a hot suspension of particles and gases flowing rapidly from a volcano, driven by being denser than the surrounding atmosphere. New Zealand geologist Patrick Marshall (1869–1950) coined the term ignimbrite from the Latin igni- [fire] and imbri- [rain].

Ignimbrites are made of a very poorly sorted mixture of volcanic ash (or tuff when lithified) and pumice and/or scoria lapilli, commonly with scattered lithic fragments. The ash is composed of glass shards and crystal fragments. Ignimbrites may be fairly loose and unconsolidated, or a poor to strongly lithified (solidified) rock called lapilli tuff. Near the volcanic source, ignimbrites often contain thick accumulations of lithic blocks, and distally, many show meter-thick accumulations of rounded cobbles of pumice. Ignimbrites may be white, grey, pink, beige, brown, or black depending on their composition and density. Many pale ignimbrites are dacitic or rhyolitic. Darker-coloured ignimbrites may be densely welded volcanic glass or, less commonly, mafic in composition.

View the full Wikipedia page for Ignimbrite
↑ Return to Menu

Pyroclastic flow in the context of Pyroclastic surge

A pyroclastic surge is a fluidised mass of turbulent gas and rock fragments that is ejected during some volcanic eruptions. It is similar to a pyroclastic flow but has a lower density, having a much higher ratio of gas to rock, which makes it more turbulent and allows it to rise over ridges and hills rather than always travel downhill as pyroclastic flows do.

The speed of pyroclastic density currents has been measured directly via photography only in the case of Mount St. Helens, where they reached 320-470 km/h, or 90–130 m/s (200–290 mph). Estimates of other modern eruptions are around 360 km/h, or 100 m/s (225 mph). Pyroclastic flows may generate surges. For example, the city of Saint-Pierre in Martinique in 1902 was overcome by one. Pyroclastic surge include 3 types, which are base surge, ash-cloud surge, and ground surge.

View the full Wikipedia page for Pyroclastic surge
↑ Return to Menu

Pyroclastic flow in the context of 1991 eruption of Mount Pinatubo

The 1991 eruption of Mount Pinatubo in the Philippines' Luzon Volcanic Arc was the second-largest volcanic eruption of the 20th century, behind only the 1912 eruption of Novarupta in Alaska. Eruptive activity began on April 2 as a series of phreatic explosions from a fissure that opened on the north side of Mount Pinatubo. Seismographs were set up and began monitoring the volcano for earthquakes. In late May, the number of seismic events under the volcano fluctuated from day-to-day. Beginning June 6, a swarm of progressively shallower earthquakes accompanied by inflationary tilt on the upper east flank of the mountain, culminated in the extrusion of a small lava dome.

On June 12, the volcano's first spectacular eruption sent an ash column 19 km (12 mi) into the atmosphere. Additional explosions occurred overnight and the morning of June 13. Seismic activity during this period became intense. When even more highly gas-charged magma reached Pinatubo's surface on June 15, the volcano exploded, sending an ash cloud 40 km (25 mi) into the atmosphere. Volcanic ash and pumice blanketed the countryside. Huge pyroclastic flows roared down the flanks of Pinatubo, filling once-deep valleys with fresh volcanic deposits as much as 200 m (660 ft) thick. The eruption removed so much magma and rock from beneath the volcano that the summit collapsed to form a small caldera 2.5 km (1.6 mi) across.

View the full Wikipedia page for 1991 eruption of Mount Pinatubo
↑ Return to Menu

Pyroclastic flow in the context of 1980 eruption of Mount St. Helens

In March 1980, a series of volcanic explosions and pyroclastic flows began at Mount St. Helens in Skamania County, Washington, United States. A series of phreatic blasts occurred from the summit and escalated for nearly two months until a catastrophic, major explosive eruption took place on May 18, 1980, at 8:32 a.m. The eruption, which had a volcanic explosivity index of 5, was the first to occur in the contiguous United States since the much smaller 1915 eruption of Lassen Peak in California. It has often been considered the most disastrous volcanic eruption in U.S. history.

The eruption was preceded by a series of earthquakes and steam-venting episodes caused by an injection of magma at shallow depth below the volcano that created a large bulge and a fracture system on the mountain's north slope. An earthquake at 8:32:11 am PDT (UTC−7) on May 18, 1980, caused the entire weakened north face to slide away, a sector collapse which was the largest subaerial landslide in recorded history. This allowed the partly molten rock, rich in high-pressure gas and steam, to suddenly explode northward toward Spirit Lake in a hot mix of lava and pulverized older rock, overtaking the landslide. An eruption column rose 80,000 feet (24 km; 15 mi) into the atmosphere and deposited ash in eleven U.S. states and various Canadian provinces. At the same time, snow, ice, and several entire glaciers on the volcano melted, forming a series of large lahars (volcanic mudslides) that reached as far as the Columbia River, nearly 50 miles (80 km; 260,000 ft) to the southwest. Less severe outbursts continued into the next day, only to be followed by other large, but not as destructive, eruptions later that year. The thermal energy released during the eruption was equal to 26 megatons of TNT.

View the full Wikipedia page for 1980 eruption of Mount St. Helens
↑ Return to Menu

Pyroclastic flow in the context of Soufrière Hills volcano

The Soufrière Hills (/ˈsfriɛər/) is an active, complex stratovolcano with many lava domes forming its summit on the Caribbean island of Montserrat, an overseas territory of the United Kingdom. After a long period of dormancy, the Soufrière Hills volcano became active in 1995 and continued to erupt until 2010. Its last eruption was in 2013. Its eruptions have rendered more than half of Montserrat uninhabitable, destroying the capital city, Plymouth, and causing widespread evacuations: about two-thirds of the population have left the island. Chances Peak in the Soufrière Hills was the highest summit on Montserrat until the mid-1990s, but it has since been eclipsed by various rising and falling volcanic domes during the recent volcanic activity.

The volcano is andesitic in nature, and the current pattern of activity includes periods of lava dome growth, punctuated by brief episodes of dome collapse which result in pyroclastic flows, ash venting, and explosive eruption. The volcano is monitored by the Montserrat Volcano Observatory. Volcanic gas emissions from this volcano are measured by a multi-component gas analyzer system, which detects pre-eruptive degassing of rising magmas, improving prediction of volcanic activity.

View the full Wikipedia page for Soufrière Hills volcano
↑ Return to Menu

Pyroclastic flow in the context of Mushroom cloud

A mushroom cloud is a distinctive mushroom-shaped flammagenitus cloud of debris, smoke, and usually condensed water vapour resulting from a large explosion. The effect is most commonly associated with a nuclear explosion, but any sufficiently energetic detonation or deflagration will produce a similar effect. They can be caused by powerful conventional weapons, including large thermobaric weapons. Some volcanic eruptions and impact events can produce natural mushroom clouds.

Mushroom clouds result from the sudden formation of a large volume of lower-density gases at any altitude, causing a Rayleigh–Taylor instability. The buoyant mass of gas rises rapidly, resulting in turbulent vortices curling downward around its edges, forming a temporary vortex ring that draws up a central column, possibly with smoke, debris, condensed water vapor, or a combination of these, to form the "mushroom stem". The mass of gas plus entrained moist air eventually reaches an altitude where it is no longer of lower density than the surrounding air; at this point, it disperses, drifting back down, which results in fallout following a nuclear blast. The stabilization altitude depends strongly on the profiles of the temperature, dew point, and wind shear in the air at and above the starting altitude.

View the full Wikipedia page for Mushroom cloud
↑ Return to Menu