Pulse-code modulation in the context of Digital music


Pulse-code modulation in the context of Digital music

Pulse-code modulation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Pulse-code modulation in the context of "Digital music"


⭐ Core Definition: Pulse-code modulation

Pulse-code modulation (PCM) is a method used to digitally represent analog signals. It is the standard form of digital audio in computers, compact discs, digital telephony and other digital audio applications. In a PCM stream, the amplitude of the analog signal is sampled at uniform intervals, and each sample is quantized to the nearest value within a range of digital steps. Shannon, Oliver, and Pierce were inducted into the National Inventors Hall of Fame for their PCM patent granted in 1952.

Linear pulse-code modulation (LPCM) is a specific type of PCM in which the quantization levels are linearly uniform. This is in contrast to PCM encodings in which quantization levels vary as a function of amplitude (as with the A-law algorithm or the μ-law algorithm). Though PCM is a more general term, it is often used to describe data encoded as LPCM.

↓ Menu
HINT:

In this Dossier

Pulse-code modulation in the context of Digital audio

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit resolution. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

In a digital audio system, an analog electrical signal representing the sound is converted with an analog-to-digital converter (ADC) into a digital signal, typically using pulse-code modulation (PCM). This digital signal can then be recorded, edited, modified, and copied using computers, audio playback machines, and other digital tools. For playback, a digital-to-analog converter (DAC) performs the reverse process, converting a digital signal back into an analog signal, which is then sent through an audio power amplifier and ultimately to a loudspeaker.

View the full Wikipedia page for Digital audio
↑ Return to Menu

Pulse-code modulation in the context of Audio bit depth

In digital audio using pulse-code modulation (PCM), bit depth is the number of bits of information in each sample, and it directly corresponds to the resolution of each sample. Examples of bit depth include Compact Disc Digital Audio, which uses 16 bits per sample, and DVD-Audio and Blu-ray Disc, which can support up to 24 bits per sample.

In basic implementations, variations in bit depth primarily affect the noise level from quantization error—thus the signal-to-noise ratio (SNR) and dynamic range. However, techniques such as dithering, noise shaping, and oversampling can mitigate these effects without changing the bit depth. Bit depth also affects bit rate and file size.

View the full Wikipedia page for Audio bit depth
↑ Return to Menu

Pulse-code modulation in the context of Exif

Exchangeable image file format (officially Exif, according to JEIDA/JEITA/CIPA specifications) is a standard that specifies formats for images, sound, and ancillary tags used by digital cameras (including smartphones), scanners and other systems handling image and sound files recorded by digital cameras. The specification uses the following existing encoding formats with the addition of specific metadata tags: JPEG lossy coding for compressed image files, TIFF Rev. 6.0 (RGB or YCbCr) for uncompressed image files, and RIFF WAV for audio files (linear PCM or ITU-T G.711 μ-law PCM for uncompressed audio data, and IMA-ADPCM for compressed audio data). It does not support JPEG 2000 or GIF encoded images.This standard consists of the Exif image file specification and the Exif audio file specification.

View the full Wikipedia page for Exif
↑ Return to Menu

Pulse-code modulation in the context of SONET

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates, data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

SONET and SDH, which are essentially the same, were originally designed to transport circuit mode communications, e.g. DS1, DS3, from a variety of different sources. However, they were primarily designed to support real-time, uncompressed, circuit-switched voice encoded in PCM format. The primary difficulty in doing this prior to SONET/SDH was that the synchronization sources of these various circuits were different. This meant that each circuit was actually operating at a slightly different rate and with different phase. SONET/SDH allowed for the simultaneous transport of many different circuits of differing origin within a single framing protocol. SONET/SDH is not a complete communications protocol in itself, but a transport protocol (not a "transport" in the OSI Model sense).

View the full Wikipedia page for SONET
↑ Return to Menu

Pulse-code modulation in the context of Compact Disc Digital Audio

Compact Disc Digital Audio (CDDA or CD-DA), also known as Digital Audio Compact Disc or simply as Audio CD, is the standard format for audio compact discs. The standard is defined in the Red Book technical specifications, which is why the format is also dubbed "Redbook audio" in some contexts. CDDA utilizes pulse-code modulation (PCM) and uses a 44,100 Hz sampling frequency and 16-bit resolution, and was originally specified to store up to 74 minutes of stereo audio per disc.

The first commercially available audio CD player, the Sony CDP-101, was released in October 1982 in Japan. The format gained worldwide acceptance in 1983–84, selling more than a million CD players in its first two years, to play 22.5 million discs, before overtaking records and cassette tapes to become the dominant standard for commercial music. Peaking around year 2000, the audio CD contracted over the next decade due to rising popularity and revenue from digital downloading, and during the 2010s by digital music streaming, but has remained as one of the primary distribution methods for the music industry. In the United States, phonograph record revenues surpassed the CD in 2020 for the first time since the 1980s, but in other major markets like Japan it remains the premier music format by a distance and in Germany it outsold other physical formats at least fourfold in 2022.

View the full Wikipedia page for Compact Disc Digital Audio
↑ Return to Menu

Pulse-code modulation in the context of Programmable sound generator

A programmable sound generator (PSG) is a sound chip that generates (or synthesizes) audio wave signals built from one or more basic waveforms, and often some kind of noise. PSGs use a relatively simple method of creating sound compared to other methods such as frequency modulation synthesis or pulse-code modulation.

View the full Wikipedia page for Programmable sound generator
↑ Return to Menu

Pulse-code modulation in the context of Rompler

A rompler is an electronic musical instrument that plays pre-fabricated sounds based on audio samples. The term rompler is a blend of the terms ROM and sampler. In contrast to samplers, romplers do not record audio. Both may have additional sound editing features, such as layering several waveforms and modulation with ADSR envelopes, filters and LFOs.

The waveforms are commonly stored in form of PCM-encoded waveforms which were similar to those stored in WAV or AIFF file formats, although in some hardware design other encodings and forms of (usually lossless) compression could be used.

View the full Wikipedia page for Rompler
↑ Return to Menu